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Abstract

Cyclophosphamide is a widely used alkylating agent in the 

treatment of various malignancies and autoimmune 

disorders. It acts as a prodrug that is metabolized in the liver 

by the cytochrome P450 system to form active metabolites, 

including phosphoramide mustard, which interferes with 

DNA replication and induces cell death. Due to its broad 

antineoplastic activity, cyclophosphamide is commonly used 

in lymphoma, leukemia, and solid tumors. However, its 

clinical use is associated with several adverse effects, such 

as hepatotoxicity, nephrotoxicity, lung damage, 

neurotoxicity, cardiac toxicity reproductive toxicity and 

hemorrhagic cystitis. Understanding its mechanism of action 

and toxicity profile is essential for optimizing its therapeutic 

application. 

Keywords: Cyclophosphamide, Toxicokinetics, Mode of Action, Toxicity 

1. Introduction 

Cyclophosphamide (CP), belonging to the nitrogen mustard class, is an example of chemotherapeutic drugs, which is a highly 

reactive cytotoxic bifunctional alkylating agent. 

  

a. Chemical structure  

The cytostatic alkylating drug cyclophosphamide (CP), also known as (RS)-N, N-bis (2-chloroethyl)-1,3,2-oxazaphosphinan-2-

amine 2-oxide, was synthesized from bis-b-chloroethylamine [1]. Its chemical formula is C7 H15Cl2 N2 O2 P [2]. 

 

 
 

Fig 1: Chemical structure of cyclophosphamide [3] 

 

b. Mode of action 

Alkylating agents bind to biological molecules including DNA and proteins, degrading their structure and function. Covalently 

binding these chemicals to DNA causes methylation and replication mistakes resulted in aberrant mitosis, chromosomal 

breakage, and mutations [4]. 

Cyclophosphamide metabolism produces the active metabolites phosphorylamide and acrolein, cross-links are created by the 

phosphoramide metabolite at the guanine N-7 site inside and between adjacent DNA strands. These changes are irreversible
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and ultimately result in programmed cell death [5]. If the 

alkylated DNA isn’t restored, the tumor suppressor protein 

p53 is triggered, which stops the cell cycle and gives time 

for DNA repair. When DNA repair fails, p53 triggers 

apoptosis, also The hypothalamic-pituitary-adrenal (HPA) 

axis  can trigger the apoptotic pathway by inhibition of anti-

apoptotic proteins such as B-cell lymphoma 2 (Bcl-2) and B 

cell leukemia-xL (Bcl-xL), along with the suppression of 

nuclear factor kappa B (NF-κB) activation, moreover, HPA 

enhances the phosphorylation of p38, c-Jun N-terminal 

kinase (JNK), and mitogen-activated protein kinases 

(MAPK) which accelerates cell death  [6].  Although acrolein 

has no anticancer effect, it is the primary cause of 

hemorrhagic cystitis [7]. 
Cyclophosphamide has immunosuppressive properties and 

is selective for T cells in addition to its antimitotic and 

antineoplastic actions. CP is employed at high doses in 

malignant hematopoietic cell eradication therapy; however, 

lower doses are effective in selectively modulating 

regulatory T cells. It reduces the secretion of interferon-

gamma and Interleukin (IL)-12 while enhancing the 

secretion of  secreted by Type 2 T helper )Th2) cells, such as 

IL-4 and IL-10 in the cerebral spinal fluid and peripheral 

blood [8, 9]. 

Because of these effects, cyclophosphamide is regarded a 

beneficial adjunct to tumor vaccination protocols, post-

transplant alloreactivity management, and the treatment of 

immune-mediated diseases and some types of vasculitis [10, 

11, 12]. While the exact method by which cyclophosphamide 

performs its immunomodulatory impact is unknown, various 

studies have proposed a few possible mechanisms of action, 

these include eliminating regulatory T cells in naive or 

malignant host cells, inducing T cell growth factors such as 

type I interferons, and preconditioning host cells for donor T 

cells to reduce alloreactivity [8, 9, 12]. 

 

c. exposure 

Cyclophosphamide is one of the most often used medicines 

in cancer chemotherapy. It is a cytotoxic alkylating drug 

having anticancer and immunosuppressive effects that is 

used to treat multiple myeloma, chronic and acute leukemia, 

solid malignancies, and lymphomas  [10]. As an immune 

suppressor, CP has been widely used to treat severe 

autoimmune inflammatory diseases, including rheumatoid 

arthritis, systemic erythema associated with lupus and bone 

marrow transplant immune ablations [14]. 

 

d. Toxicokinetics profile of  Cyclophosphamide: 

Cyclophosphamide can be administered orally or 

intravenously on a range of regimens [12]. As a monohydrate, 

CP is soluble in water, normal saline or alcohol [3]. One hour 

after taking the medication orally, CP reaches its highest 

concentration due to good absorption. CP has an oral 

bioavailability of 85–100% [13] and the first-pass impact in 

the gut and liver causes a portion of the medication to be 

metabolized [3]. 
 

Cyclophosphamide metabolism: 

Cyclophosphamide is an inert prodrug that needs to be 

activated chemically and enzymatically. It was discovered 

that this process takes place in the liver and is mediated by 

the cytochrome P450 system and involves oxidative 

hydroxylation of the C4 position in CP. The 

oxazaphosphorine ring undergoes hydroxylation to produce 

4-hydroxycyclophosphamide (4OHCP), which coexists 

alongside aldophosphamide (ALDO), its tautomer  [14]. 

Aldophosphamide, which enters the cell actively by 

glycoproteins or passive transport [15]. Aldehyde 

dehydrogenase transforms ALDO into the 

carboxyphosphamide (CARB). Carboxyphosphamide is 

protected by the antioxidant molecules glutathione [16, 17]. 

whereas 4OHCP is enzymatically transformed to 

4ketocyclophosphamide [18]. There was an increase in the 

level of 4-hydroxycyclophosphamide and carboxyethyl 

phosphamide in the blood plasma of individuals treated with 

CP [19]. In cell culture tests, the portion of ALDO that was 

not eliminated to CARB is degraded by β-elimination of 

acrolein to PAM [18]. However, in vivo, phosphodiesterases 

(PDE) enzymatically break down ALDO to PAM and 3-

hydroxypropanal (HPA) [20]. 

 

e. Cyclophosphamide toxicodynamic  

Due to the cyclophosphamide's toxicities, there are several 

restrictions on using it, including gastrointestinal side 

effects, cardiac toxicity, gonadal toxicity, hepatotoxicity, 

and nephrotoxicity [21, 22]. CP caused toxicity in multiple 

organs in rats, including the testes, liver, lungs, spleen, and 

kidneys, compared to the control group [23]. 

 

2. Hepatotoxicity 

Cyclophosphamide-treated rats show a notable increase in 

the activity and function of the liver biomarkers found in 

serum, including lactate dehydrogenase (LDH), gamma-

glutamyl transferase (γGT), aspartate transaminase (AST), 

alanine transaminase (ALT), and alkaline phosphatase 

(ALP) [24]. 

By decreasing hepatic Glutathione  )GSH   ( and 

simultaneously suppressing hepatic Glutathione Peroxidase 

)GSPx   ( , Glutathione Reductase  )GSR( and  Catalase  )CAT( 

activities, it increased oxidative stress  [24]. The diminished 

levels of these antioxidants may arise from their heightened 

ability to scavenge or inhibit CP-mediated free radicals as  
reactive nitrogen species  (RNS   ( and  reactive oxygen species 

(ROS) and/or CP reactive metabolites (acrolein, 

phosphoramide mustard, hydroperoxy cyclophosphamide, 

etc.)  [25, 26]. It's interesting to note that CP caused a 

noticeable increase in the hepatic activity of Glutathione S-

Transferase  )GST(  and  Superoxide Dismutase )SOD)  [24]  As 

a kind of adaptation and defense against xenobiotic-

mediated oxidative stress, cells exposed to xenobiotic 

intoxication have been shown in a number of models to 

occasionally up-regulate antioxidant enzymes like GST and 

SOD activities [27, 28]. 

Cyclophosphamide-induced hepatic lipid peroxidation by 

showing that CP injection significantly raised hepatic 

Malondialdehyde (MDA( and total (amino acids, peptides, 

proteins, and lipids) hydroperoxide (TROOH) levels  [24]. 

The CP-intoxicated experimental animals elicited a 

pronounced increase in the levels of hepatic Nitric Oxide 

(NO) and Inducible Nitric Oxide Synthase (iNOS) [25]. 

Moreover, Cyclophosphamide is associated with enhanced 

synthesis of inflammatory mediators generated by damaged 

cells or immune cell-induced leukocyte infiltration at the 

injury site [29]. ROS enhances expression of inflammatory 

mediators and Nuclear Factor –kappa )NF-κB( signaling 

pathway [30]. NF-κB is one of the most important 

transcription factors involved in the regulation of genes 

related to inflammation, cell division and survival [31]. CP 
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induced a significant increase in NF-κB, Interleukin-6(IL-6), 

and Tumor Necrosis Factor alpha (TNF α) levels, with a 

reduction in Interleukin-10 (IL-10) level [32]. 
Also, Cyclophosphamide treatment resulted in a large 

decrease in the anti-apoptotic hepatic B-cell lymphoma 2 

(Bcl-2) level but a considerable increase in the levels of pro-

apoptotic factors caspase-3 and Bcl-2-associated X protein 

(Bax) [33, 34]. CP activates the apoptotic and autophagic 

pathways by elevating the expression of cysteine aspartate-

specific protease-3 and the levels of light chain 3B (LC3B), 

while also enhancing the expression of 8-hydroxy-2-

deoxyguanosine (8-OHdG), a marker of oxidative DNA 

damage [31].  

Additionally, Cyclophosphamide induced marked hepatic 

damage, characterized by extensive mononuclear cell 

infiltration, loss of cellular boundaries, hepatocellular 

necrosis, and substantial cytoplasmic depletion in 

hepatocytes [35]. 

 

3. Nephrotoxicity 

An additional side effect of CP is nephrotoxicity, which is 

demonstrated by elevated blood urea nitrogen (BUN) and 

serum creatinine levels [36]. 

Cyclophosphamide intoxication induced histopathological 

alteration as Bowman's capsule degradation, tubular edema, 

and necrosis in the kidney [37]. Also showed expanding 

Bowman's capsule, interstitial hemorrhage, and necrosis 

with loss of nuclei and shrinkage glomeruli [36]. There was a 

decrease in the number of renal glomeruli and an increase in 

the amount of interstitial tissue [38]. 

These adverse consequences may result from oxidative 

stress and the production of extremely reactive electrophiles 

during the metabolism of CP, which further deteriorates 

target tissues and cell membranes [39]. 

 After CP breaks down into its active metabolites, it 

produces hazardous reactive oxygen species, which causes 

seriously injured cells to generate more pro-inflammatory 

cytokines like NF-κB [40]. Elevated concentrations of these 

cytokines additionally repress PPAR-γ expression, hence 

impacting other physiological processes controlled by 

PPAR-γ [40]. 

Rats given cyclophosphamide showed a decline in 

antioxidant components like GSH, CAT, and SOD activities 

in renal tissue [41] with an increase in MDA level and a 

decrease Nrf2 expression,  which was accompanied by 

elimination of NF-κB repression, pro-inflammatory cytokine 

TNF-α is upregulated, while anti-inflammatory cytokine IL-

10 is suppressed in renal tissue [36].  

In the kidney, Cp poisoning  induced a decline in Bcl-2, 

while elevation the expression of the apoptotic regulating 

protein Bax. Cell death results from the activation of 

caspases triggered by Bax [37]. 
 

4. Neurotoxicity 

The brain undergoes oxidative stress when CP is 

administered [42]. Because CP has a detrimental effect on 

hippocampus neurogenesis, it causes cognitive and 

psychosocial deficits, particularly on the hippocampal-

dependent memory task [43, 44]. Throughout maturity, the 

hippocampal neurogenesis persists [43]. In addition to 

causing neuronal damage, CP can cause disturbance of the 

cholinergic pathway [45]. 

Rat hippocampus Acetylcholinesterase (AChE) activity is 

elevated in the brain by CP-mediated oxidative stress [46]. 

Here, CP's elevated AChE activity may reduce cholinergic 

signaling, which could result in memory loss and cognitive 

impairment [47]. 

Rats subjected to CP revealed sections stained with H&E 

that either indicated necrosis or degeneration of the 

hippocampal neurocytes, which include the granule cells of 

the dentate gyrus and the pyramidal cells of the hippocampal 

proper. There was a notable decrease in the thickness of the 

granule cell and pyramidal cell layers [48, 49]. 

The immunohistochemical section revealed that many 

apoptotic neurons with positive responses to the apoptosis 

marker p53 and decreased positive responses to the anti-

apoptotic marker Bcl2 [49]. 
Also, CP administration induced an increase in expression 

of Glial Fibrillary Acidic Protein (GFAP) indicated that CP 

caused astrocyte activation. This could be an attempt to 

compensate for damage to the neurons [48]. Because GFAP 

increases the structural stability of astrocyte processes, it is 

recognized to be crucial for modifying astrocyte shape and 

movement [50]. It was discovered that brain damage, 

resulting from chemical agents, illnesses, or trauma, caused 

astrogliosis. Rapid Glial Fibrillary Acidic Protein (GFAP) 

production in astrogliosis can be seen by immunostaining 

with GFAP antibodies [51].  

Cyclophosphamide dramatically lowered cerebral Nrf2, 

GSH, and the activity of the GSH-dependent antioxidant 

enzyme GPx. Thus, changes in Nrf2 and GSH metabolism 

may cause CP to impair cerebral antioxidant equilibrium. 

The oxidative action increases the formation of ROS, which 

may have exceeded the SOD and CAT actions [47]. 

 

5. Reproductive Toxicity 

Testicular tissue is prone to oxidative stress damage more 

quickly than other tissues due to its high rate of 

mitochondrial oxygen consumption, accelerated rate of cell 

division, and proportionately higher levels of unsaturated 

fatty acids. In addition, the low oxygen pressure and weak 

testicular artery create fierce cell competition for oxygen [52]. 

Cyclophosphamide treatment induced testicular toxicity, 

characterized by a significant reduction in the percentages of 

sperm motility, sperm vitality and normal sperms, but 

increased the percentages of sperms with abnormal head, 

abnormal tail, spermatic droplets and tailless head [53]. 

It's reported that injection of CP caused dysregulation of the 

steroidogenesis system, as evidenced by a sharp decline in 

the CP group's serum concentrations of Luteinizing 

Hormone (LH) and testosterone [1]. 

Leydig cells include two primary enzyme groups involved 

in the steroidogenesis pathway: hydroxysteroid 

dehydrogenases (HSDs) and cytochrome P450 (CYPs) [54]. 

The process of steroidogenesis begins with the trafficking of 

cholesterol via the inner mitochondrial membrane-produced 

steroidogenic acute regulatory protein (StAR), which is then 

converted to pregnenolone by the enzyme cytochrome P450, 

family 11 (CYP11) [55]. CP induced downregulation of 

androgenic-related gene expression, such as HSD, CYP11, 

and StAR, was found to be associated with a decrease in 

plasma testosterone levels [56]. 

cyclophosphamide can lower serum testosterone levels by 

inhibiting the activity of the17β-hydroxysteroid  
dehydrogenase )17β-HSD( enzyme, which catalyzes the 

conversion of androstenedione to testosterone and is 

essential for the biological activity of steroid hormones like 

estrogen and androgen [57]. 

http://www.multiresearchjournal.com/
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Cyclophosphamide induced histological alterations include a 

decrease in the height of the germinal epithelium, the length 

and diameter of the seminiferous tubules, a decrease in the 

mean total volume of the testes and their constituent parts, 

and the quantity of spermatogenic cells [58], also reduced 

daily sperm production as well as sertoli and Leydig cells 
[59]. 

This reduction in spermatogenic cells, which has been 

related to the indirect impairment of spermatogenesis, 

gonadotropin production, and testosterone levels, is most 

likely the cause of the lower testicular weight in CP-treated 

rats [60]. 

Testicular oxidative stress plays a significant role in the 

pathophysiology of male infertility because it can alter the 

testicular microvasculature and hormonal signaling patterns, 

which can increase germ cell death and ultimately decrease 

spermatogenesis [61]. CP had an impact on the testicular 

redox state as it induced an increase in testicular NO and 

MDA levels. Additionally, it reduced GSH and Total 

Antioxidant Capacity (TAC) levels [56]. 

Moreover, cyclophosphamide's active metabolite acrolein 

stimulates NF-kB and Activator Protein-1(AP-1), two 

transcription factors. Upon entering the cell nucleus, NF-kB 

triggers the transcription of pro-inflammatory cytokines 

such as TNF-α and IL-1B, hence elevating apoptosis. 

Furthermore, cyclophosphamide reduces the Nrf2 factor, 

which is essential for cell survival in the presence of 

oxidative stress [58]. 

Moreover, CP induced alteration in the female reproductive 

system as evidenced by CP treatment caused ovarian failure 

or impaired infertility in cancer patients, Due to apoptotic 

alterations in granulosa and theca cells, followed by follicle 

loss [62]. It is well recognized that CP can use a variety of 

mechanisms, such as oxidative stress, inflammation, and 

apoptosis, to cause ovarian toxicity and severe ovarian 

damage, which can lead to premature ovarian failure (POF) 
[63]. 

 

6. Cardiac Toxicity 

It was discovered that cyclophosphamide caused immediate 

heart injury, including severe inflammation and necrosis, 

hemorrhage and fibrosis [64]. Also, A decrease in heart rate, 

depression of the PR segment, elevation of the ST segment, 

and abnormal electrocardiogram (ECG) are indicative of 

CP-induced cardiotoxicity [36]. Excessive therapeutic 

dosages of CP resulted in a deadly cardiotoxicity that 

exhibits a range of myopericarditis symptoms and 

indicators. This could induce fatal complications like 

cardiac tamponade, arrhythmias, and congestive heart 

failure [65]. 

Furthermore, as demonstrated by an elevated 8-OHdG 

concentration in the cardiac tissue, cyclophosphamide 

causes cardiac oxidative DNA damage, which accounts for 

the aberrant ECG alterations [51].  

The observed increase in serum Cardiac Troponin I (cTnI) 

levels, LDH, and Creatine Kinase–MB (CK-MB) activity 

suggests myocardial injury after CP. In addition, it indicated 

that the heart of rats treated with CP had impaired 

myocardial membrane stability, integrity, and function due 

to increased lipid peroxidation and poor antioxidant defense. 

This led to the leakage of CK-MB, LDH, and cTnI, which 

raised the levels of these substances in the blood [36]. 

Histological analysis of cardiac samples revealed evidence 

of myocardial necrosis [64], wavy myocardiac fibers with 

loss of cardiac cell components and focal fatty alterations 
[36]. 

 

7. Bladder Toxicity 

The bladder is filled with acrolein metabolites [67], causing 

urotoxicity through direct interaction with the uroepithelium 
[68]. According to research on both humans and animals, 

hemorrhagic cystitis is a dangerous adverse effect of using 

CP [69, 70]. Hemorrhagic cystitis, which involves bleeding of 

the bladder mucosa due to a disseminated inflammation in 

the bladder, is typically caused by oxazaphosphorine 

chemotherapy such as CP and ifosfamide [68]. 

Also, Hemorrhagic cystitis is indicated by edema, the 

formation of blood clots, and injury to the bladder 

urothelium [71]. Patients with extensive bladder hemorrhage 

who received a high dosage of intravenous CP were reported 

to have a death risk of 2% to 4% [68]. Furthermore, CP-

induced cystitis causes an overactive bladder, resulting in 

urothelium damage and severe inflammation [72]. 

Several studies on animal models of CP-induced urinary 

bladder injury have found that CP injection increased 

bladder lipid peroxidation (LPO) and decreased bladder 

GSH [73]. 

Inflammation is linked to the pathogenesis of CP-induced 

hemorrhagic cystitis [73]. 

Acrolein activated NF-kB, leading to the generation of 

inflammatory cytokines such as TNF-α, IL-6, along with 

ROS [75]. In bladder tissue treated with CP, Cyclooxygenase-

2 (COX-2) mRNA expression is elevated. COX-2 is a pro-

inflammatory enzyme increased by cytokines such as TNF-α 

and has a role in the pathophysiology of CP-induced 

hemorrhagic cystitis [72]. 

 

8. Lung Toxicity 

Cyclophosphamide showed a considerable decrease in body 

weight along with an increase in lung/body weight ratio [76]. 

This drop in body weight may be attributed to CP's harmful 

and degenerative effects [77]. However, the biochemical and 

histological findings indicate that the higher lung/body 

weight ratio may be caused by edema, fibrillation, or 

enhanced collagen formation [78]. 

In bronchoalveolar lavage fluid, CP raised the levels of total 

protein and LDH [76]. Elevated LDH and total protein levels 

signify microvascular leakage, airway cell influx, and 

damage to the airways and/or alveoli [79]. Also, the amount 

of neutrophils, lymphocytes, eosinophils, and basophils in 

bronchoalveolar lavage fluid was significantly increased by 

CP-injection. This impact is linked to the inflammatory 

cascades that occur following CP treatment [76]. 

In lung homogenates, CP caused a clear state of oxidative 

stress, as evidenced by a considerable increase in MDA 

levels and an obvious decrease in GSH and SOD levels [76]. 

Significantly elevated NO levels were found in CP 

intoxication. This rise in NO levels could result from iNOS 

overexpression [80]. The liberated nitric oxide may react with 

superoxide anions to generate peroxynitrite [81] and activate 

NF-κB to promote the generation of pro-inflammatory 

cytokines [82]. 

 

9. Conclusion 

Because of its wide therapeutic efficacy, cyclophosphamide 

continues to be a mainstay in the treatment of numerous 

cancers and autoimmune diseases. Its active metabolites, 

which disrupt DNA replication and cause cell death, are 

http://www.multiresearchjournal.com/
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largely responsible for its therapeutic efficacy. However, 

cautious clinical monitoring is required due to the 

pharmacokinetic complexity and dose-dependent toxicity of 

cyclophosphamide. To maximize therapeutic results, a 

thorough grasp of its pharmacokinetics, toxicity profile, and 

mode of action is crucial. Strategies to increase efficacy 

while reducing side effects should be the main focus of 

future study. 
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