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Abstract

Cyclophosphamide is a widely used alkylating agent in the
treatment of various malignancies and autoimmune
disorders. It acts as a prodrug that is metabolized in the liver
by the cytochrome P450 system to form active metabolites,
including phosphoramide mustard, which interferes with

in lymphoma, leukemia, and solid tumors. However, its
clinical use is associated with several adverse effects, such
as  hepatotoxicity,  nephrotoxicity, lung  damage,
neurotoxicity, cardiac toxicity reproductive toxicity and
hemorrhagic cystitis. Understanding its mechanism of action

and toxicity profile is essential for optimizing its therapeutic
application.

DNA replication and induces cell death. Due to its broad
antineoplastic activity, cyclophosphamide is commonly used

Keywords: Cyclophosphamide, Toxicokinetics, Mode of Action, Toxicity

1. Introduction
Cyclophosphamide (CP), belonging to the nitrogen mustard class, is an example of chemotherapeutic drugs, which is a highly
reactive cytotoxic bifunctional alkylating agent.

a. Chemical structure
The cytostatic alkylating drug cyclophosphamide (CP), also known as (RS)-N, N-bis (2-chloroethyl)-1,3,2-oxazaphosphinan-2-
amine 2-oxide, was synthesized from bis-b-chloroethylamine [!l. Its chemical formula is C7 H15CI2 N2 O2 P 2],

Cl — E:— Ex i‘”
N —P
A/AN
Cl—= fi H, 0
Cyclophosphamide

Fig 1: Chemical structure of cyclophosphamide [

b. Mode of action

Alkylating agents bind to biological molecules including DNA and proteins, degrading their structure and function. Covalently
binding these chemicals to DNA causes methylation and replication mistakes resulted in aberrant mitosis, chromosomal
breakage, and mutations [,

Cyclophosphamide metabolism produces the active metabolites phosphorylamide and acrolein, cross-links are created by the
phosphoramide metabolite at the guanine N-7 site inside and between adjacent DNA strands. These changes are irreversible
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and ultimately result in programmed cell death Bl If the
alkylated DNA isn’t restored, the tumor suppressor protein
p53 is triggered, which stops the cell cycle and gives time
for DNA repair. When DNA repair fails, p53 triggers
apoptosis, also The hypothalamic-pituitary-adrenal (HPA)
axis can trigger the apoptotic pathway by inhibition of anti-
apoptotic proteins such as B-cell lymphoma 2 (Bcl-2) and B
cell leukemia-xL (Bcl-xL), along with the suppression of
nuclear factor kappa B (NF-kB) activation, moreover, HPA
enhances the phosphorylation of p38, c-Jun N-terminal
kinase (JNK), and mitogen-activated protein kinases
(MAPK) which accelerates cell death . Although acrolein
has no anticancer effect, it is the primary cause of
hemorrhagic cystitis [71.

Cyclophosphamide has immunosuppressive properties and
is selective for T cells in addition to its antimitotic and
antineoplastic actions. CP is employed at high doses in
malignant hematopoietic cell eradication therapy; however,
lower doses are effective in selectively modulating
regulatory T cells. It reduces the secretion of interferon-
gamma and Interleukin (IL)-12 while enhancing the
secretion of secreted by Type 2 T helper (Th2) cells, such as
IL-4 and IL-10 in the cerebral spinal fluid and peripheral
blood &1,

Because of these effects, cyclophosphamide is regarded a
beneficial adjunct to tumor vaccination protocols, post-
transplant alloreactivity management, and the treatment of
immune-mediated diseases and some types of vasculitis [
11,12 “While the exact method by which cyclophosphamide
performs its immunomodulatory impact is unknown, various
studies have proposed a few possible mechanisms of action,
these include eliminating regulatory T cells in naive or
malignant host cells, inducing T cell growth factors such as
type I interferons, and preconditioning host cells for donor T
cells to reduce alloreactivity %% 121,

c. exposure
Cyclophosphamide is one of the most often used medicines
in cancer chemotherapy. It is a cytotoxic alkylating drug
having anticancer and immunosuppressive effects that is
used to treat multiple myeloma, chronic and acute leukemia,
solid malignancies, and lymphomas 'l As an immune
suppressor, CP has been widely used to treat severe
autoimmune inflammatory diseases, including rheumatoid
arthritis, systemic erythema associated with lupus and bone
marrow transplant immune ablations [4],

d. Toxicokinetics profile of Cyclophosphamide:
Cyclophosphamide can be administered orally or
intravenously on a range of regimens ['2l. As a monohydrate,
CP is soluble in water, normal saline or alcohol Bl. One hour
after taking the medication orally, CP reaches its highest
concentration due to good absorption. CP has an oral
bioavailability of 85-100% ['3! and the first-pass impact in
the gut and liver causes a portion of the medication to be
metabolized B,

Cyclophosphamide metabolism:

Cyclophosphamide is an inert prodrug that needs to be
activated chemically and enzymatically. It was discovered
that this process takes place in the liver and is mediated by
the cytochrome P450 system and involves oxidative
hydroxylation of the C4 position in CP. The
oxazaphosphorine ring undergoes hydroxylation to produce
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4-hydroxycyclophosphamide (40OHCP), which coexists
alongside aldophosphamide (ALDO), its tautomer 4],
Aldophosphamide, which enters the cell actively by
glycoproteins or passive transport [’ Aldehyde
dehydrogenase transforms ALDO into the
carboxyphosphamide (CARB). Carboxyphosphamide is
protected by the antioxidant molecules glutathione U6 171,
whereas 4OHCP is enzymatically transformed to
4ketocyclophosphamide ['®1. There was an increase in the
level of 4-hydroxycyclophosphamide and carboxyethyl
phosphamide in the blood plasma of individuals treated with
CP [, In cell culture tests, the portion of ALDO that was
not eliminated to CARB is degraded by [-elimination of
acrolein to PAM ['81. However, in vivo, phosphodiesterases
(PDE) enzymatically break down ALDO to PAM and 3-
hydroxypropanal (HPA) 21,

e. Cyclophosphamide toxicodynamic

Due to the cyclophosphamide's toxicities, there are several
restrictions on using it, including gastrointestinal side
effects, cardiac toxicity, gonadal toxicity, hepatotoxicity,
and nephrotoxicity ! 22l CP caused toxicity in multiple
organs in rats, including the testes, liver, lungs, spleen, and
kidneys, compared to the control group 231,

2. Hepatotoxicity

Cyclophosphamide-treated rats show a notable increase in
the activity and function of the liver biomarkers found in
serum, including lactate dehydrogenase (LDH), gamma-
glutamyl transferase (yGT), aspartate transaminase (AST),
alanine transaminase (ALT), and alkaline phosphatase
(ALP) 241,

By decreasing hepatic  Glutathione (GSH) and
simultaneously suppressing hepatic Glutathione Peroxidase
(GSPx) , Glutathione Reductase (GSR) and Catalase (CAT)
activities, it increased oxidative stress *. The diminished
levels of these antioxidants may arise from their heightened
ability to scavenge or inhibit CP-mediated free radicals as
reactive nitrogen species (RNS) and reactive oxygen species
(ROS) and/or CP reactive metabolites (acrolein,
phosphoramide mustard, hydroperoxy cyclophosphamide,
etc.) 25 261 It's interesting to note that CP caused a
noticeable increase in the hepatic activity of Glutathione S-
Transferase (GST) and Superoxide Dismutase (SOD) 24 As
a kind of adaptation and defense against xenobiotic-
mediated oxidative stress, cells exposed to xenobiotic
intoxication have been shown in a number of models to
occasionally up-regulate antioxidant enzymes like GST and
SOD activities [27-28],

Cyclophosphamide-induced hepatic lipid peroxidation by
showing that CP injection significantly raised hepatic
Malondialdehyde (MDA) and total (amino acids, peptides,
proteins, and lipids) hydroperoxide (TROOH) levels [24,
The CP-intoxicated experimental animals elicited a
pronounced increase in the levels of hepatic Nitric Oxide
(NO) and Inducible Nitric Oxide Synthase (iNOS) 3,
Moreover, Cyclophosphamide is associated with enhanced
synthesis of inflammatory mediators generated by damaged
cells or immune cell-induced leukocyte infiltration at the
injury site 2, ROS enhances expression of inflammatory
mediators and Nuclear Factor —kappa (NF-«kB) signaling
pathway [B% NF-xB is one of the most important
transcription factors involved in the regulation of genes
related to inflammation, cell division and survival BU. CP
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induced a significant increase in NF-kB, Interleukin-6(IL-6),
and Tumor Necrosis Factor alpha (TNF a) levels, with a
reduction in Interleukin-10 (IL-10) level B2,

Also, Cyclophosphamide treatment resulted in a large
decrease in the anti-apoptotic hepatic B-cell lymphoma 2
(Bcl-2) level but a considerable increase in the levels of pro-
apoptotic factors caspase-3 and Bcl-2-associated X protein
(Bax) 3% 3] CP activates the apoptotic and autophagic
pathways by elevating the expression of cysteine aspartate-
specific protease-3 and the levels of light chain 3B (LC3B),
while also enhancing the expression of 8-hydroxy-2-
deoxyguanosine (8-OHdG), a marker of oxidative DNA
damage BY,

Additionally, Cyclophosphamide induced marked hepatic
damage, characterized by extensive mononuclear cell
infiltration, loss of cellular boundaries, hepatocellular

necrosis, and substantial cytoplasmic depletion in
hepatocytes 11,
3. Nephrotoxicity

An additional side effect of CP is nephrotoxicity, which is
demonstrated by elevated blood urea nitrogen (BUN) and
serum creatinine levels 3],

Cyclophosphamide intoxication induced histopathological
alteration as Bowman's capsule degradation, tubular edema,
and necrosis in the kidney B7. Also showed expanding
Bowman's capsule, interstitial hemorrhage, and necrosis
with loss of nuclei and shrinkage glomeruli 3%, There was a
decrease in the number of renal glomeruli and an increase in
the amount of interstitial tissue %,

These adverse consequences may result from oxidative
stress and the production of extremely reactive electrophiles
during the metabolism of CP, which further deteriorates
target tissues and cell membranes 1.

After CP breaks down into its active metabolites, it
produces hazardous reactive oxygen species, which causes
seriously injured cells to generate more pro-inflammatory
cytokines like NF-kB 1. Elevated concentrations of these
cytokines additionally repress PPAR-y expression, hence
impacting other physiological processes controlled by
PPAR-y [49),

Rats given cyclophosphamide showed a decline in
antioxidant components like GSH, CAT, and SOD activities
in renal tissue ! with an increase in MDA level and a
decrease Nrf2 expression, which was accompanied by
elimination of NF-kB repression, pro-inflammatory cytokine
TNF-a is upregulated, while anti-inflammatory cytokine IL-
10 is suppressed in renal tissue 61,

In the kidney, Cp poisoning induced a decline in Bcl-2,
while elevation the expression of the apoptotic regulating
protein Bax. Cell death results from the activation of
caspases triggered by Bax 7],

4. Neurotoxicity

The brain undergoes oxidative stress when CP is
administered “?!. Because CP has a detrimental effect on
hippocampus neurogenesis, it causes cognitive and
psychosocial deficits, particularly on the hippocampal-
dependent memory task [ 4. Throughout maturity, the
hippocampal neurogenesis persists 1. In addition to
causing neuronal damage, CP can cause disturbance of the
cholinergic pathway [,

Rat hippocampus Acetylcholinesterase (AChE) activity is
elevated in the brain by CP-mediated oxidative stress 6],
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Here, CP's elevated AChE activity may reduce cholinergic
signaling, which could result in memory loss and cognitive
impairment 7],

Rats subjected to CP revealed sections stained with H&E
that either indicated necrosis or degeneration of the
hippocampal neurocytes, which include the granule cells of
the dentate gyrus and the pyramidal cells of the hippocampal
proper. There was a notable decrease in the thickness of the
granule cell and pyramidal cell layers 1849,

The immunohistochemical section revealed that many
apoptotic neurons with positive responses to the apoptosis
marker p53 and decreased positive responses to the anti-
apoptotic marker Bcl2 M1,

Also, CP administration induced an increase in expression
of Glial Fibrillary Acidic Protein (GFAP) indicated that CP
caused astrocyte activation. This could be an attempt to
compensate for damage to the neurons ¥, Because GFAP
increases the structural stability of astrocyte processes, it is
recognized to be crucial for modifying astrocyte shape and
movement % It was discovered that brain damage,
resulting from chemical agents, illnesses, or trauma, caused
astrogliosis. Rapid Glial Fibrillary Acidic Protein (GFAP)
production in astrogliosis can be seen by immunostaining
with GFAP antibodies B,

Cyclophosphamide dramatically lowered cerebral Nrf2,
GSH, and the activity of the GSH-dependent antioxidant
enzyme GPx. Thus, changes in Nrf2 and GSH metabolism
may cause CP to impair cerebral antioxidant equilibrium.
The oxidative action increases the formation of ROS, which
may have exceeded the SOD and CAT actions 4],

5. Reproductive Toxicity

Testicular tissue is prone to oxidative stress damage more
quickly than other tissues due to its high rate of
mitochondrial oxygen consumption, accelerated rate of cell
division, and proportionately higher levels of unsaturated
fatty acids. In addition, the low oxygen pressure and weak
testicular artery create fierce cell competition for oxygen 321,
Cyclophosphamide treatment induced testicular toxicity,
characterized by a significant reduction in the percentages of
sperm motility, sperm vitality and normal sperms, but
increased the percentages of sperms with abnormal head,
abnormal tail, spermatic droplets and tailless head P31,

It's reported that injection of CP caused dysregulation of the
steroidogenesis system, as evidenced by a sharp decline in
the CP group's serum concentrations of Luteinizing
Hormone (LH) and testosterone (1.

Leydig cells include two primary enzyme groups involved
in the  steroidogenesis pathway:  hydroxysteroid
dehydrogenases (HSDs) and cytochrome P450 (CYPs) B4,
The process of steroidogenesis begins with the trafficking of
cholesterol via the inner mitochondrial membrane-produced
steroidogenic acute regulatory protein (StAR), which is then
converted to pregnenolone by the enzyme cytochrome P450,
family 11 (CYP11) B3, CP induced downregulation of
androgenic-related gene expression, such as HSD, CYPI1,
and StAR, was found to be associated with a decrease in
plasma testosterone levels B¢,

cyclophosphamide can lower serum testosterone levels by
inhibiting  the activity of  thel7p-hydroxysteroid
dehydrogenase (17B-HSD) enzyme, which catalyzes the
conversion of androstenedione to testosterone and is
essential for the biological activity of steroid hormones like
estrogen and androgen P71,
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Cyclophosphamide induced histological alterations include a
decrease in the height of the germinal epithelium, the length
and diameter of the seminiferous tubules, a decrease in the
mean total volume of the testes and their constituent parts,
and the quantity of spermatogenic cells ¥, also reduced
daily sperm production as well as sertoli and Leydig cells
[59]

This reduction in spermatogenic cells, which has been
related to the indirect impairment of spermatogenesis,
gonadotropin production, and testosterone levels, is most
likely the cause of the lower testicular weight in CP-treated
rats [0,

Testicular oxidative stress plays a significant role in the
pathophysiology of male infertility because it can alter the
testicular microvasculature and hormonal signaling patterns,
which can increase germ cell death and ultimately decrease
spermatogenesis [°!l. CP had an impact on the testicular
redox state as it induced an increase in testicular NO and
MDA levels. Additionally, it reduced GSH and Total
Antioxidant Capacity (TAC) levels 13,

Moreover, cyclophosphamide's active metabolite acrolein
stimulates NF-kB and Activator Protein-1(AP-1), two
transcription factors. Upon entering the cell nucleus, NF-kB
triggers the transcription of pro-inflammatory cytokines
such as TNF-a and IL-1B, hence elevating apoptosis.
Furthermore, cyclophosphamide reduces the Nrf2 factor,
which is essential for cell survival in the presence of
oxidative stress %,

Moreover, CP induced alteration in the female reproductive
system as evidenced by CP treatment caused ovarian failure
or impaired infertility in cancer patients, Due to apoptotic
alterations in granulosa and theca cells, followed by follicle
loss [921. It is well recognized that CP can use a variety of
mechanisms, such as oxidative stress, inflammation, and
apoptosis, to cause ovarian toxicity and severe ovarian

damage, which can lead to premature ovarian failure (POF)
[63]

6. Cardiac Toxicity

It was discovered that cyclophosphamide caused immediate
heart injury, including severe inflammation and necrosis,
hemorrhage and fibrosis 4. Also, A decrease in heart rate,
depression of the PR segment, elevation of the ST segment,
and abnormal electrocardiogram (ECG) are indicative of
CP-induced cardiotoxicity [, Excessive therapeutic
dosages of CP resulted in a deadly cardiotoxicity that
exhibits a range of myopericarditis symptoms and
indicators. This could induce fatal complications like
cardiac tamponade, arrhythmias, and congestive heart
failure (63,

Furthermore, as demonstrated by an elevated 8-OHdG
concentration in the cardiac tissue, cyclophosphamide
causes cardiac oxidative DNA damage, which accounts for
the aberrant ECG alterations ',

The observed increase in serum Cardiac Troponin I (cTnl)
levels, LDH, and Creatine Kinase-MB (CK-MB) activity
suggests myocardial injury after CP. In addition, it indicated
that the heart of rats treated with CP had impaired
myocardial membrane stability, integrity, and function due
to increased lipid peroxidation and poor antioxidant defense.
This led to the leakage of CK-MB, LDH, and cTnl, which
raised the levels of these substances in the blood ¢,
Histological analysis of cardiac samples revealed evidence
of myocardial necrosis 4 wavy myocardiac fibers with
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loss of cardiac cell components and focal fatty alterations
[36]

7. Bladder Toxicity

The bladder is filled with acrolein metabolites 7], causing
urotoxicity through direct interaction with the uroepithelium
(8] According to research on both humans and animals,
hemorrhagic cystitis is a dangerous adverse effect of using
CP %% 701 Hemorrhagic cystitis, which involves bleeding of
the bladder mucosa due to a disseminated inflammation in
the bladder, is typically caused by oxazaphosphorine
chemotherapy such as CP and ifosfamide %,

Also, Hemorrhagic cystitis is indicated by edema, the
formation of blood clots, and injury to the bladder
urothelium Y. Patients with extensive bladder hemorrhage
who received a high dosage of intravenous CP were reported
to have a death risk of 2% to 4% [%®]. Furthermore, CP-
induced cystitis causes an overactive bladder, resulting in
urothelium damage and severe inflammation %,

Several studies on animal models of CP-induced urinary
bladder injury have found that CP injection increased
bladder lipid peroxidation (LPO) and decreased bladder
GSH "3,

Inflammation is linked to the pathogenesis of CP-induced
hemorrhagic cystitis [73].

Acrolein activated NF-kB, leading to the generation of
inflammatory cytokines such as TNF-a, IL-6, along with
ROS 31, In bladder tissue treated with CP, Cyclooxygenase-
2 (COX-2) mRNA expression is elevated. COX-2 is a pro-
inflammatory enzyme increased by cytokines such as TNF-a
and has a role in the pathophysiology of CP-induced
hemorrhagic cystitis "],

8. Lung Toxicity

Cyclophosphamide showed a considerable decrease in body
weight along with an increase in lung/body weight ratio [,
This drop in body weight may be attributed to CP's harmful
and degenerative effects [/’ However, the biochemical and
histological findings indicate that the higher lung/body
weight ratio may be caused by edema, fibrillation, or
enhanced collagen formation 78],

In bronchoalveolar lavage fluid, CP raised the levels of total
protein and LDH [7®, Elevated LDH and total protein levels
signify microvascular leakage, airway cell influx, and
damage to the airways and/or alveoli ). Also, the amount
of neutrophils, lymphocytes, eosinophils, and basophils in
bronchoalveolar lavage fluid was significantly increased by
CP-injection. This impact is linked to the inflammatory
cascades that occur following CP treatment 6],

In lung homogenates, CP caused a clear state of oxidative
stress, as evidenced by a considerable increase in MDA
levels and an obvious decrease in GSH and SOD levels "%,
Significantly elevated NO levels were found in CP
intoxication. This rise in NO levels could result from iNOS
overexpression 8%, The liberated nitric oxide may react with
superoxide anions to generate peroxynitrite ®! and activate
NF-kB to promote the generation of pro-inflammatory
cytokines 1?1,

9. Conclusion

Because of its wide therapeutic efficacy, cyclophosphamide
continues to be a mainstay in the treatment of numerous
cancers and autoimmune diseases. Its active metabolites,
which disrupt DNA replication and cause cell death, are
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largely responsible for its therapeutic efficacy. However,

cautious clinical monitoring

is required due to the

pharmacokinetic complexity and dose-dependent toxicity of
cyclophosphamide. To maximize therapeutic results, a
thorough grasp of its pharmacokinetics, toxicity profile, and
mode of action is crucial. Strategies to increase efficacy
while reducing side effects should be the main focus of
future study.
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