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Abstract

A hyperfunction associates each input with a set of
admissible outputs, extending ordinary functions by
permitting multivalued images rather than single values. A
superhyperfunction uses iterated powersets for its domain
and codomain, so it can encode hierarchical, multi-level

output structure and hyperstructural multivalued behavior
across a system. In this paper, we investigate supermodular
hyperfunctions and monotone hyperfunctions, focusing on
how these properties interact with such hierarchical, set-
valued mappings.
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1. Introduction

A function assigns each element of a domain exactly one value in a codomain, capturing deterministic input-output
relationships between variables (Bylinski, 1990) M2, A hyperfunction maps each element to a set of possible outputs,
generalizing classical functions by allowing multi-valued images within the domain (Fujita et al, 2025) . An n-
superhyperfunction maps subsets from iterated powersets to higher-level powersets, enabling hierarchical, multi-level outputs
and hyperstructural multi-valued behavior across domains (Smarandache, 2022) 1. These concepts have been actively studied
in a variety of recent research works (Jdid et al.. 2025) [19],

Although HyperFunctions and SuperHyperFunctions are important concepts capable of representing hierarchical functional
behavior, it cannot yet be said that they have been extensively studied. In this paper, we examine supermodular functions and
monotone functions in the context of hyperfunctions and superhyperfunctions. These extended function frameworks may offer
new approaches to applying supermodular and monotone function properties to hierarchical and layered structures.

2. Preliminaries
This section presents the key concepts and definitions required for the discussions in this paper. Unless otherwise stated, all
sets and structures considered here are assumed to be finite and simple (undirected, no loops).

2.1 Hyperfunction and n-Superhyperfunction

Within the study of hyperstructures (Davvaz et al., 2018) ) and n-superhyperstructures (Smarandache, 2024) 171 for functions,
the notions of hyperfunction and n-superhyperfunction were formulated by Smarandache (Smarandache, 2022) 131, Since then,
hyperfunctions have attracted substantial attention and a variety of applications have been explored. For completeness, the
essential definitions and related theorems are summarized below.

Definition 2.1 (Base Set). A base set X is the foundational set from which complex structures such as powersets and
hyperstructures are derived. It is formally defined as:

X = {x | x is an element within a specified domain).

Definition 2.2 (Powerset) (Fujita, 2025b) 81, The powerset of a set X, denoted P(X), is the collection of all possible subsets of
X, including both the empty set and X itself. Formally, it is expressed as:

P(X) = {A]| 4 SX}.
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Definition 2.3 (n-th Powerset) (Smarandache et al., 2022)
The n-th powerset of a set X, denoted P.(X), is defined
iteratively, starting with the standard powerset. The
recursive construction is given by:

Pi(X) = P(X); Pusi(X) = P(Pu(X)), for n>1.

Similarly, the n-th non-empty powerset, denoted P*,(X), is
defined recursively as:

P'1(X) = P(X) \ {@}; P"ys1) (X) = P(P"w(X)) \ { D).

Definition 2.4 (Hyperoperation) (Spartalis, 1996) '8, A
hyperoperation is a generalization of a binary operation
where the result of combining two elements is a set, not a
single element. Formally, for a set X, a hyperoperation ° is
defined as:

o: X x X — P(X).

Definition 2.5 (Hyperfunction) (Fujita et al, 2025) UL, A
Hyperfunction is a function where the domain remains a
classical set X, but the codomain is extended to the powerset
of X, denoted P(X). Formally, a Hyperfunction f'is defined
as:

f- X — P(X). Forany x €X, f(x) € Xis a subset of X.

Example 2.6 Let X = {a, b, ¢}. Define f{a) = {a, b}, f(b) =
{b}, f(c) = @ Here, input a “branches” to two admissible
outputs, input b returns a single output, and input ¢ yields no
admissible output (e.g., a rule-based recommender that lists
all acceptable next states for a given state).

Definition 2.7 (SuperHyperOperations). Let X be a non-
empty set, and let P(X) be the k-th powerset of X. Define:

P(H) = 1, PEI(H) = P(P(H)) for £=0.

A SuperHyperOperation of order (m, n) is an m-ary
operation:

o (m, n)‘. H" _)P*n(‘X)'

If the codomain excludes the empty set, it is classical-type;
if it includes it, it is Neutrosophic-type.

Definition 2.8 (n-Superhyperfunction) (Smarandache,
2022) 131, An n-Superhyperfunction generalizes the concept
of a Hyperfunction by using the n-th powerset P,(S) as the
codomain. Formally, for n > 2, an n-Superhyperfunction f is
defined as:

S PA(S) = PufS),

Where 0 < r < n, and P,(S) is the n-th powerset of S. This
definition allows f to map subsets of S (from P.(S)) to
elements in the n-th powerset P,(S).

Example 2.9 (n =2, r=1): Let S = {1, 2}. Then P;(S) = {2
{1}, {2}, {1,2}} and P(S) = P(P;(S)). Define:
" H(O)={0}

" H({1Y) = {1} {1L2))
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= H({2) ={{2}}
" H({12}) = {1}, {2}, {1.2}).

Here, each input subset (from P;(S)) is mapped to a set of
subsets of P;(S) (an element of P(S)), modeling
hierarchical, multi-level outcomes (e.g., mapping a chosen
team to all admissible “teams-of-subtasks” configurations).

2.2 Supermodular Set Function

A supermodular set function exhibits increasing marginal
gains; for any sets 4 and B, union plus intersection value
dominates sum (Contreras et al., 2014 and Liberty et al.,
2017) &1,

Definition 2.10 (Contreras et al., 2014) 4., Let N be a finite
ground set and f* 2V — R. The function f is supermodular if,
for all subsets 4,B €N,

J(4) +f(B) <f(A UB) + flA N B).

Equivalently (marginal form), for all 4 € B € N and any
elementi £ B,

JA U{i}) = fi4) <f(B U{i}) — f(B);
That is, marginal gains are increasing.

2.3 Monotone Set Functions

A monotone set function is nondecreasing: whenever A is
contained in B, the function value never decreases when
adding elements (Benvenuti et al, 2002) B,

Definition 2.11 (Benvenuti et al, 2002) BL Let N be a finite
ground set and f° 2Y — R. The function f is monotone
(nondecreasing) if, for all 4 € B €N, f(A) <f(B).
(Analogously, f is monotone nonincreasing if f{4) > f(B)
whenever 4 € B).

3. Main Results
This section presents the main contributions of the paper.
Specifically, we examine the structures of Supermodular

HyperFunctions,  Supermodular ~ SuperHyperFunctions,
Monotone HyperFunctions, and Monotone
SuperHyperFunctions.

3.1 Supermodular HyperFunction

A supermodular hyperfunction maps each collection of
inputs to a set of outputs and “rewards pooling”: considering
two input collections together yields at least as
comprehensive an output as processing them separately and
then combining results.

Definition 3.1 Let X and Y be finite sets. A set
hyperfunction is a map H: 2¥ — 2' (multi-valued on
subsets). H is supermodular if for all 4,B € X,

H(4) UH(B) € H(A UB) UH(A N B).

Equivalently, for every monotone valuation v: 2¥ — R, the
composite veH is a supermodular set function on 2%,
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Theorem 3.2 (Supermodular HyperFunctions generalize
Supermodular Functions)

Let H: 2 — 2Y be a supermodular hyperfunction; that is, for
all4,B € X, H(A) UH(B) €H(A UB) UH(A N B).

Let v: 2¥ — R be a monotone valuation (i.e., for all U,V €Y,
v(U) +v(V) =vwU UV)+vwUN V), and U €V implies

v(U) =v(V)).

Define f = v o H: 2°X — R. Then f is a supermodular set
function:

Forall 4,B € X, f(A) + f(B) <f(A UB) + f{(A N B).
Proof. Fix 4,B € X. By monotonicity of v,
v(H(A)) + v(H(B)) <v(H(A) UH(B)) + v(H(A) N H(B)).

By supermodularity of H, H(4) U H(B) S H(A UB) UH(A
N B).

Applying monotonicity again and then the valuation
identity,

V(H(A) UH(B)) + v(H(A) N H(B)) < v(H(A UB) U H(A
N B)) + vH(A UB) N H(A N B) = vH(4 UB)) +
V(H(A N B)).

Combining the inequalities gives,

J(A) + f(B) <f(4 UB) + f{A N B),
So f'is supermodular. m

3.2 Supermodular SuperHyperFunction

A supermodular superhyperfunction operates on hierarchical
collections of sets and follows the same pooling principle
across levels, so joint consideration of inputs never loses
output compared with separate handling.

Definition 3.3 Let S be a finite set and 0 < < n. An n-
superhyperfunction is a map H: P.(S) — P.(S), where Pi(S)
is the k-th iterated powerset. H is supermodular if for all 4,8
E P,(S),

H(A) UH(B) SH(A UB) UH(A N B).

Equivalently, for any monotone valuation v: P,(S) — R, the
composite veH is a supermodular set function on P,(S).

Theorem 3.4 Fix a finite base set S and integers 0 <r < n.
An n-superhyperfunction is a map H: P.(S) — P(S), where
Pi(S) is the k-fold iterated powerset. Say H is supermodular
if for all 4,B € P.(S),

H(A) UH(B) SH(A UB) UH(A N B).

Then:
(a) Every supermodular hyperfunction is a special case of a
supermodular superhyperfunction (take » = n = I, so

domain and codomain are ordinary powersets).

www.multiresearchjournal.com

(b) Conversely, any supermodular superhyperfunction with »
=n = [ is exactly a supermodular hyperfunction.

Proof. When r = n = I, we have P.(S) = 25 and P,(S) = 25,
and the supermodularity condition above is identical to the
hyperfunction condition. Thus the /-level notion coincides
with supermodular hyperfunctions, and the n-level notion
(for arbitrary 7n) contains the /-level case as a
specialization. Hence supermodular superhyperfunctions
strictly generalize supermodular hyperfunctions. m

3.3 Monotone HyperFunction

A monotone hyperfunction respects inclusion: whenever one
input collection extends another, its produced output set also
extends, never shrinking when the input grows.

Definition 3.5 Let (X, <) be a poset and let > X — Z(S) be a
hyperfunction (multi-valued map). The map f'is monotone if
for all x, y € X with x <y, we have f{x) € f(y); i.e., f is
nondecreasing with respect to the domain order and set-
inclusion in the codomain.

Theorem 3.6 (Monotone HyperFunctions generalize
Monotone Functions)

Let (X, <y) and (Y, <y be posets. Every monotone function
g: X — Y can be represented canonically as a monotone
hyperfunction H: X — 27 by,

H(x):= lgx) ={y €Y.y <rg(x)}.

Moreover, g is recovered from H by taking the maximum
element of H(x), so the embedding is faithful.

Proof. If x <y y and g is monotone, then g(x) <v g(y). Hence
lg(x) € |lg(y), so H is monotone as a hyperfunction. For
each x, H(x) is the principal ideal generated by g(x), whose
maximum is exactly g(x), thus x » max(H(x)) reproduces g.
Therefore the class of monotone functions sits inside the
class of monotone hyperfunctions (as those whose images
are principal ideals), proving that monotone hyperfunctions
generalize monotone functions. m

3.4 Monotone SuperHyperFunction

A monotone superhyperfunction preserves inclusion
throughout the hierarchy: richer or larger inputs at any level
cannot lead to smaller outputs at that or higher levels.

Definition 3.7 Let S be a set, 0 <r <n, and let f: 7 (S) —
P'(S) be an n-superhyperfunction. Using set-inclusion on
both domain and codomain, f'is monotone if for all 4, B €
P1(S) with 4 € B, we have f(4) C f(B); equivalently, f is
isotone under inclusion.

Theorem 3.8 (Monotone SuperHyperFunctions generalize
Monotone HyperFunctions).

Let (X, <x) be a poset and let h: X — 2V be a monotone
hyperfunction. Define the union-lift:

HY: 25— 2¥ by HY(4):= Ufx €4} h(x).

Then HY is a monotone 1-superhyperfunction (domain and
codomain ordered by inclusion). Conversely, for any
monotone 1-superhyperfunction F: 2¥ — 27 that is union-
preserving (i.e., F(A) = Ukes F({x}) for all 4 < X), the
restriction f(x).= F({x}) is a monotone hyperfunction and F

390


http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies

= (union-lift of f). Hence monotone superhyperfunctions
strictly extend monotone hyperfunctions.

Proof. (Forward.) If A € B then Useq h(x) S Ukes h(x), so HY
is monotone under inclusion. Thus HY is a [-
superhyperfunction. Also, for every x, HY({x}) = h(x), so h is
realized as the singleton restriction of HV.

(Backward.) Suppose F is monotone and union-preserving.
Define f(x):= F({x}). For x <yy, the set inclusion {x} < {x,y}
and monotonicity of F give F({x}) <& F({xy}).
Symmetrically, F({y}) < F({x,y}), hence f is isotone
whenever <X refines inclusion over the singleton embedding
(e.g., when <yis the discrete order or when one works with
the natural power-set domain). By union-preservation, for
any 4 we have F(4) = Uses F({x}) = Ukes f(x), so F is
exactly the union-lift of f Therefore every monotone
hyperfunction embeds into a monotone superhyperfunction
via union-lift, and union-preserving superhyperfunctions
reduce to hyperfunctions by singleton restriction. m

4. Conclusion

In this paper, we examined supermodular functions and
monotone  functions  within  the frameworks of
hyperfunctions and superhyperfunctions.

For future work, we plan to investigate extensions using
Fuzzy Functions (Demirci, 1999) [ Intuitionistic Fuzzy
Functions (Tak, 2020) "%, Neutrosophic Functions (Hatip,
2020) 1, Neutrosophic HyperFunctions (Al-Odhari, 2025)
(21 2-Refined Neutrosophic Functions (Musa, 2025),
Neutrobalanced functions (Pandey, 2022), and Plithogenic
Functions (Alhasan, 2023), in order to further develop
hierarchical and uncertainty-aware functional models.

5. Declaration of conflicting interest
The authors declare that there is no conflict of interest in this
work.

6. Funding
This study did not receive any financial or external support
from organizations or individuals.

7. Data Availability

This research is purely theoretical, involving no data
collection or analysis. We encourage future researchers to
pursue empirical investigations to further develop and
validate the concepts introduced here.

8. Disclaimer (Note on Computational Tools)

No computer-assisted proof, symbolic computation, or
automated theorem proving tools (e.g., Mathematica,
SageMath, Coq, etc.) were used in the development or
verification of the results presented in this paper. All proofs
and derivations were carried out manually and analytically
by the authors.

9. Code Availability
No code or software was developed for this study.

10. Ethical Approval

As this research is entirely theoretical in nature and does not
involve human participants or animal subjects, no ethical
approval is required.

www.multiresearchjournal.com

11. References

1. Alhasan YA, Abdulfatah RA. Plithogenic functions
value. Neutrosophic Sets and Systems. 2023; 58:596-
602.

2. Al-Odhari A. Neutrosophic  Power-Set and
Neutrosophic Hyper-Structure of Neutrosophic Set of
Three Types. Annals of Pure and Applied Mathematics.
2025;31(2):125-146.

3. Benvenuti P, Vivona D. Monotone set functions-based
integral. In Handbook Of Measure (Cap. 33) Theory.
Pap E, 2002, 1329-1379.

4. Contreras I, Fernandez E. Hub location as the
minimization of a supermodular set function.
Operations Research. 2014; 62(3):557-570.

5. Davvaz B, Vougiouklis T. Walk through weak
hyperstructures, A: Hv-structures. World Scientific,
2018.

6. Demirci M. Fuzzy functions and their fundamental
properties. Fuzzy Sets and Systems. 1999; 106(2):239-
246.

7. Fujita T, Jdid M, Smarandache F. Hyperfunctions and
superhyperfunctions in linear programming:
Foundations and applications. International Journal of
Neutrosophic Science. 2025; 26(4):65-76.

8. Fujita T. Powerset-Theoretic Foundations for
HyperAutomata and SuperHyperAutomata. Systemic
Analytics. 2025b; 3(3):222-231.

9. Hatip A. The special neutrosophic functions.
International Journal of Neutrosophic Science. 2020;
4(2):104-116.

10. Jdid M, Smarandache F, Fujita T. A linear
mathematical model of the vocational training problem
in a company using neutrosophic logic, hyperfunctions,
and SuperHyperFunction. Neutrosophic Sets and
Systems. 2025; 87:1-11.

11. Liberty E, Sviridenko M. Greedy minimization of
weakly supermodular set functions. In Approximation,
Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM
2017).  Schloss  Dagstuhl-Leibniz-Zentrum  fiir
Informatik, 2017, 19-1.

12. Law Bylinski C. Functions and their basic properties.
Formalized Mathematics. 1990; 1(1):55-65.

13. Musa IA, Alhasan YA. The integral of 2-refined
rational neutrosophic functions. Neutrosophic Sets and
Systems. 2025; 80(1):40.

14. Pandey SK, Mishra PR, Poojary P. Classicalbalanced,
antibalanced and neutrobalanced functions.
Neutrosophic Sets and Systems. 2022; 48:386-398.

15. Smarandache F. The SuperHyperFunction and the
Neutrosophic SuperHyperFunction (revisited again)
(Vol. 3). Infinite Study, 2022.

16. Smarandache F, Sahin M, Bakbak D, Ulugay V, Kargin
A. (Eds.). Neutrosophic SuperHyperAlgebra and New
Types of Topologies. Infinite Study, 2023.

17. Smarandache F. Foundation of superhyperstructure &
neutrosophic superhyperstructure. Neutrosophic Sets
and Systems. 2024; 63:367-381.

18. Spartalis S. On the number of Hv-rings with P-
hyperoperations. Discrete Mathematics. 1996; 155(1-
3):225-231.

391


http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

19. Tak N. Type-1 recurrent intuitionistic fuzzy functions
for forecasting. Expert systems with applications. 2020;
140:112913.

392


http://www.multiresearchjournal.com/

