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Abstract

A hyperfunction associates each input with a set of 

admissible outputs, extending ordinary functions by 

permitting multivalued images rather than single values. A 

superhyperfunction uses iterated powersets for its domain 

and codomain, so it can encode hierarchical, multi-level 

output structure and hyperstructural multivalued behavior 

across a system. In this paper, we investigate supermodular 

hyperfunctions and monotone hyperfunctions, focusing on 

how these properties interact with such hierarchical, set-

valued mappings. 

Keywords: Hyperfunction, Superhyperfunction, Supermodular Function, Monotone Functions 

1. Introduction 

A function assigns each element of a domain exactly one value in a codomain, capturing deterministic input-output 

relationships between variables (Bylinski,1990) [12]. A hyperfunction maps each element to a set of possible outputs, 

generalizing classical functions by allowing multi-valued images within the domain (Fujita et al, 2025) [7]. An n-

superhyperfunction maps subsets from iterated powersets to higher-level powersets, enabling hierarchical, multi-level outputs 

and hyperstructural multi-valued behavior across domains (Smarandache, 2022) [15]. These concepts have been actively studied 

in a variety of recent research works (Jdid et al.. 2025) [10]. 

Although HyperFunctions and SuperHyperFunctions are important concepts capable of representing hierarchical functional 

behavior, it cannot yet be said that they have been extensively studied. In this paper, we examine supermodular functions and 

monotone functions in the context of hyperfunctions and superhyperfunctions. These extended function frameworks may offer 

new approaches to applying supermodular and monotone function properties to hierarchical and layered structures. 

 

2. Preliminaries 

This section presents the key concepts and definitions required for the discussions in this paper. Unless otherwise stated, all 

sets and structures considered here are assumed to be finite and simple (undirected, no loops). 

 

2.1 Hyperfunction and n-Superhyperfunction 

Within the study of hyperstructures (Davvaz et al., 2018) [5] and n-superhyperstructures (Smarandache, 2024) [17] for functions, 

the notions of hyperfunction and n-superhyperfunction were formulated by Smarandache (Smarandache, 2022) [15]. Since then, 

hyperfunctions have attracted substantial attention and a variety of applications have been explored. For completeness, the 

essential definitions and related theorems are summarized below. 

 

Definition 2.1 (Base Set). A base set X is the foundational set from which complex structures such as powersets and 

hyperstructures are derived. It is formally defined as: 

 

 X = {x | x is an element within a specified domain}. 

 

Definition 2.2 (Powerset) (Fujita, 2025b) [8]. The powerset of a set X, denoted P(X), is the collection of all possible subsets of 

X, including both the empty set and X itself. Formally, it is expressed as: 

 

 P(X) = {A | A ⊆ X}. 
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Definition 2.3 (n-th Powerset) (Smarandache et al., 2022) 

The n-th powerset of a set X, denoted Pn(X), is defined 

iteratively, starting with the standard powerset. The 

recursive construction is given by: 

 

 P1(X) = P(X); Pn+1(X) = P(Pn(X)), for n≥ 1. 

 

Similarly, the n-th non-empty powerset, denoted P*
n(X), is 

defined recursively as: 

 

 P*
1(X) = P(X) \ {∅}; P*

n+1) (X) = P(P*
n(X)) \ {∅}. 

 

Definition 2.4 (Hyperoperation) (Spartalis, 1996) [18]. A 

hyperoperation is a generalization of a binary operation 

where the result of combining two elements is a set, not a 

single element. Formally, for a set X, a hyperoperation ◦ is 

defined as: 

 

 ◦: X × X → P(X). 

 

Definition 2.5 (Hyperfunction) (Fujita et al, 2025) [7]. A 

Hyperfunction is a function where the domain remains a 

classical set X, but the codomain is extended to the powerset 

of X, denoted P(X). Formally, a Hyperfunction f is defined 

as: 

 

 f: X → P(X). For any x ∈ X, f(x) ⊆ X is a subset of X. 

 

Example 2.6 Let X = {a, b, c}. Define f(a) = {a, b}, f(b) = 

{b}, f(c) = ∅. Here, input a “branches” to two admissible 

outputs, input b returns a single output, and input c yields no 

admissible output (e.g., a rule-based recommender that lists 

all acceptable next states for a given state). 

 

Definition 2.7 (SuperHyperOperations). Let X be a non-

empty set, and let Pk(X) be the k-th powerset of X. Define: 

 

 𝑃0(𝐻) = 𝐻, 𝑃𝑘+1(𝐻) = 𝑃 (𝑃𝑘 (𝐻)) for 𝑘 ≥ 0.  

 

A SuperHyperOperation of order (m, n) is an m-ary 

operation: 

 

 ◦ (m, n): Hm → P*
n(X). 

  

If the codomain excludes the empty set, it is classical-type; 

if it includes it, it is Neutrosophic-type. 

 

Definition 2.8 (n-Superhyperfunction) (Smarandache, 

2022) [15]. An n-Superhyperfunction generalizes the concept 

of a Hyperfunction by using the n-th powerset Pn(S) as the 

codomain. Formally, for n ≥ 2, an n-Superhyperfunction f is 

defined as: 

 

 f: Pr(S) → Pn(S), 

 

Where 0 ≤ r ≤ n, and Pn(S) is the n-th powerset of S. This 

definition allows f to map subsets of S (from Pr(S)) to 

elements in the n-th powerset Pn(S). 

 

Example 2.9 (n = 2, r = 1): Let S = {1, 2}. Then P1(S) = {∅, 

{1}, {2}, {1,2}} and P2(S) = P(P1(S)). Define: 

▪ H(∅) = {∅} 

 

▪ H({1}) = {{1}, {1,2}} 

▪ H({2}) = {{2}} 

 

▪ H({1,2}) = {{1}, {2}, {1,2}}. 

 

Here, each input subset (from P1(S)) is mapped to a set of 

subsets of P1(S) (an element of P2(S)), modeling 

hierarchical, multi-level outcomes (e.g., mapping a chosen 

team to all admissible “teams-of-subtasks” configurations). 

 

2.2 Supermodular Set Function 

A supermodular set function exhibits increasing marginal 

gains; for any sets A and B, union plus intersection value 

dominates sum (Contreras et al., 2014 and Liberty et al., 

2017) [4, 11].  

 

Definition 2.10 (Contreras et al., 2014) [4]. Let N be a finite 

ground set and f: 2N → ℝ. The function f is supermodular if, 

for all subsets A,B ⊆ N, 

 

 f(A) + f(B) ≤ f(A ∪ B) + f(A ∩ B). 

 

Equivalently (marginal form), for all A ⊆ B ⊆ N and any 

element i ∉ B, 

 

 f(A ∪ {i}) − f(A) ≤ f(B ∪ {i}) − f(B); 

 

That is, marginal gains are increasing. 

 

2.3 Monotone Set Functions 

A monotone set function is nondecreasing: whenever A is 

contained in B, the function value never decreases when 

adding elements (Benvenuti et al, 2002) [3]. 

 

Definition 2.11 (Benvenuti et al, 2002) [3]. Let N be a finite 

ground set and f: 2N → ℝ. The function f is monotone 

(nondecreasing) if, for all A ⊆ B ⊆ N, f(A) ≤ f(B). 

(Analogously, f is monotone nonincreasing if f(A) ≥ f(B) 

whenever A ⊆ B). 

 

3. Main Results 

This section presents the main contributions of the paper. 

Specifically, we examine the structures of Supermodular 

HyperFunctions, Supermodular SuperHyperFunctions, 

Monotone HyperFunctions, and Monotone 

SuperHyperFunctions. 

 

3.1 Supermodular HyperFunction 

A supermodular hyperfunction maps each collection of 

inputs to a set of outputs and “rewards pooling”: considering 

two input collections together yields at least as 

comprehensive an output as processing them separately and 

then combining results. 

 

Definition 3.1 Let X and Y be finite sets. A set 

hyperfunction is a map H: 2X → 2Y (multi-valued on 

subsets). H is supermodular if for all A,B ⊆ X, 

 

 H(A) ∪ H(B) ⊆ H(A ∪ B) ∪ H(A ∩ B). 

 

Equivalently, for every monotone valuation v: 2Y → ℝ, the 

composite v∘H is a supermodular set function on 2X. 

 

 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

390 

Theorem 3.2 (Supermodular HyperFunctions generalize 

Supermodular Functions) 

Let H: 2X → 2Y be a supermodular hyperfunction; that is, for 

all A,B ⊆ X, H(A) ∪ H(B) ⊆ H(A ∪ B) ∪ H(A ∩ B). 

 

Let v: 2Y → ℝ be a monotone valuation (i.e., for all U,V ⊆ Y, 

 

 v(U) + v(V) = v(U ∪ V) + v(U ∩ V), and U ⊆ V implies 

 

 v(U) ≤ v(V)). 

 

Define f = v ∘ H: 2^X → ℝ. Then f is a supermodular set 

function: 

 

 For all A,B ⊆ X, f(A) + f(B) ≤ f(A ∪ B) + f(A ∩ B). 

 

Proof. Fix A,B ⊆ X. By monotonicity of v, 

 

 v(H(A)) + v(H(B)) ≤ v(H(A) ∪ H(B)) + v(H(A) ∩ H(B)). 

 

By supermodularity of H, H(A) ∪ H(B) ⊆ H(A ∪ B) ∪ H(A 

∩ B). 

 

Applying monotonicity again and then the valuation 

identity, 

 

v(H(A) ∪ H(B)) + v(H(A) ∩ H(B)) ≤ v(H(A ∪ B) ∪ H(A 

∩ B)) + v(H(A ∪ B) ∩ H(A ∩ B)) = v(H(A ∪ B)) + 

v(H(A ∩ B)). 

 

Combining the inequalities gives, 

 

 f(A) + f(B) ≤ f(A ∪ B) + f(A ∩ B), 

 

So f is supermodular. ∎ 

 

3.2 Supermodular SuperHyperFunction 

A supermodular superhyperfunction operates on hierarchical 

collections of sets and follows the same pooling principle 

across levels, so joint consideration of inputs never loses 

output compared with separate handling. 

 

Definition 3.3 Let S be a finite set and 0 ≤ r ≤ n. An n-

superhyperfunction is a map H: Pr(S) → Pn(S), where Pk(S) 

is the k-th iterated powerset. H is supermodular if for all A,B 

∈ Pr(S), 

 

 H(A) ∪ H(B) ⊆ H(A ∪ B) ∪ H(A ∩ B). 

 

Equivalently, for any monotone valuation v: Pn(S) → ℝ, the 

composite v∘H is a supermodular set function on Pr(S). 

 

Theorem 3.4 Fix a finite base set S and integers 0 ≤ r ≤ n. 

An n-superhyperfunction is a map H: Pr(S) → Pn(S), where 

Pk(S) is the k-fold iterated powerset. Say H is supermodular 

if for all A,B ∈ Pr(S), 

 

 H(A) ∪ H(B) ⊆ H(A ∪ B) ∪ H(A ∩ B). 

 

Then: 

(a) Every supermodular hyperfunction is a special case of a 

supermodular superhyperfunction (take r = n = 1, so 

domain and codomain are ordinary powersets). 

(b) Conversely, any supermodular superhyperfunction with r 

= n = 1 is exactly a supermodular hyperfunction. 

Proof. When r = n = 1, we have Pr(S) = 2S and Pn(S) = 2S, 

and the supermodularity condition above is identical to the 

hyperfunction condition. Thus the 1-level notion coincides 

with supermodular hyperfunctions, and the n-level notion 

(for arbitrary r,n) contains the 1-level case as a 

specialization. Hence supermodular superhyperfunctions 

strictly generalize supermodular hyperfunctions. ∎ 
 

3.3 Monotone HyperFunction 

A monotone hyperfunction respects inclusion: whenever one 

input collection extends another, its produced output set also 

extends, never shrinking when the input grows. 

 

Definition 3.5 Let (X, ≤) be a poset and let f: X → 𝒫(S) be a 

hyperfunction (multi-valued map). The map f is monotone if 

for all x, y ∈ X with x ≤ y, we have f(x) ⊆ f(y); i.e., f is 

nondecreasing with respect to the domain order and set-

inclusion in the codomain. 

 

Theorem 3.6 (Monotone HyperFunctions generalize 

Monotone Functions) 

Let (X, ≤X) and (Y, ≤Y) be posets. Every monotone function 

g: X → Y can be represented canonically as a monotone 

hyperfunction H: X → 2Y by, 

 

 H(x):= ↓g(x) = {y ∈ Y: y ≤Y g(x)}. 

 

Moreover, g is recovered from H by taking the maximum 

element of H(x), so the embedding is faithful. 

Proof. If x ≤X y and g is monotone, then g(x) ≤Y g(y). Hence 

↓g(x) ⊆ ↓g(y), so H is monotone as a hyperfunction. For 

each x, H(x) is the principal ideal generated by g(x), whose 

maximum is exactly g(x); thus x ↦ max(H(x)) reproduces g. 

Therefore the class of monotone functions sits inside the 

class of monotone hyperfunctions (as those whose images 

are principal ideals), proving that monotone hyperfunctions 

generalize monotone functions. ∎ 

 

3.4 Monotone SuperHyperFunction 

A monotone superhyperfunction preserves inclusion 

throughout the hierarchy: richer or larger inputs at any level 

cannot lead to smaller outputs at that or higher levels. 

 

Definition 3.7 Let S be a set, 0 ≤ r ≤ n, and let f: 𝒫r(S) → 

𝒫n(S) be an n-superhyperfunction. Using set-inclusion on 

both domain and codomain, f is monotone if for all A, B ⊆ 

𝒫r−1(S) with A ⊆ B, we have f(A) ⊆ f(B); equivalently, f is 

isotone under inclusion. 

 

Theorem 3.8 (Monotone SuperHyperFunctions generalize 

Monotone HyperFunctions). 

Let (X, ≤X) be a poset and let h: X → 2Y be a monotone 

hyperfunction. Define the union-lift: 

 

 H∨: 2X → 2Y by H∨(A):= ⋃{x∈A} h(x). 

 

Then H∨ is a monotone 1-superhyperfunction (domain and 

codomain ordered by inclusion). Conversely, for any 

monotone 1-superhyperfunction F: 2X → 2Y that is union-

preserving (i.e., F(A) = ⋃x∈A F({x}) for all A ⊆ X), the 

restriction f(x):= F({x}) is a monotone hyperfunction and F 
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= (union-lift of f). Hence monotone superhyperfunctions 

strictly extend monotone hyperfunctions. 

Proof. (Forward.) If A ⊆ B then ⋃x∈A h(x) ⊆ ⋃x∈B h(x), so H∨ 

is monotone under inclusion. Thus H∨ is a 1-

superhyperfunction. Also, for every x, H∨({x}) = h(x), so h is 

realized as the singleton restriction of H∨. 

(Backward.) Suppose F is monotone and union-preserving. 

Define f(x):= F({x}). For x ≤X y, the set inclusion {x} ⊆ {x,y} 

and monotonicity of F give F({x}) ⊆ F({x,y}). 

Symmetrically, F({y}) ⊆ F({x,y}), hence f is isotone 

whenever ≤X refines inclusion over the singleton embedding 

(e.g., when ≤X is the discrete order or when one works with 

the natural power-set domain). By union-preservation, for 

any A we have F(A) = ⋃x∈A F({x}) = ⋃x∈A f(x), so F is 

exactly the union-lift of f. Therefore every monotone 

hyperfunction embeds into a monotone superhyperfunction 

via union-lift, and union-preserving superhyperfunctions 

reduce to hyperfunctions by singleton restriction. ∎ 

 

4. Conclusion 

In this paper, we examined supermodular functions and 

monotone functions within the frameworks of 

hyperfunctions and superhyperfunctions. 

For future work, we plan to investigate extensions using 

Fuzzy Functions (Demirci, 1999) [6], Intuitionistic Fuzzy 

Functions (Tak, 2020) [19], Neutrosophic Functions (Hatip, 

2020) [9], Neutrosophic HyperFunctions (Al-Odhari, 2025) 
[2], 2-Refined Neutrosophic Functions (Musa, 2025), 

Neutrobalanced functions (Pandey, 2022), and Plithogenic 

Functions (Alhasan, 2023), in order to further develop 

hierarchical and uncertainty-aware functional models. 

 

5. Declaration of conflicting interest 

The authors declare that there is no conflict of interest in this 

work.  

 

6. Funding 

This study did not receive any financial or external support 

from organizations or individuals. 

 

7. Data Availability 

This research is purely theoretical, involving no data 

collection or analysis. We encourage future researchers to 

pursue empirical investigations to further develop and 

validate the concepts introduced here. 

 

8. Disclaimer (Note on Computational Tools) 

No computer-assisted proof, symbolic computation, or 

automated theorem proving tools (e.g., Mathematica, 

SageMath, Coq, etc.) were used in the development or 

verification of the results presented in this paper. All proofs 

and derivations were carried out manually and analytically 

by the authors. 

 

9. Code Availability 

No code or software was developed for this study. 

 

10. Ethical Approval 

As this research is entirely theoretical in nature and does not 

involve human participants or animal subjects, no ethical 

approval is required. 

 

 

 

11. References 

1. Alhasan YA, Abdulfatah RA. Plithogenic functions 

value. Neutrosophic Sets and Systems. 2023; 58:596-

602. 

2. Al-Odhari A. Neutrosophic Power-Set and 

Neutrosophic Hyper-Structure of Neutrosophic Set of 

Three Types. Annals of Pure and Applied Mathematics. 

2025; 31(2):125-146. 

3. Benvenuti P, Vivona D. Monotone set functions-based 

integral. In Handbook Of Measure (Cap. 33) Theory. 

Pap E, 2002, 1329-1379. 

4. Contreras I, Fernández E. Hub location as the 

minimization of a supermodular set function. 

Operations Research. 2014; 62(3):557-570. 

5. Davvaz B, Vougiouklis T. Walk through weak 

hyperstructures, A: Hv-structures. World Scientific, 

2018. 

6. Demirci M. Fuzzy functions and their fundamental 

properties. Fuzzy Sets and Systems. 1999; 106(2):239-

246. 

7. Fujita T, Jdid M, Smarandache F. Hyperfunctions and 

superhyperfunctions in linear programming: 

Foundations and applications. International Journal of 

Neutrosophic Science. 2025; 26(4):65-76. 

8. Fujita T. Powerset-Theoretic Foundations for 

HyperAutomata and SuperHyperAutomata. Systemic 

Analytics. 2025b; 3(3):222-231. 

9. Hatip A. The special neutrosophic functions. 

International Journal of Neutrosophic Science. 2020; 

4(2):104-116. 

10. Jdid M, Smarandache F, Fujita T. A linear 

mathematical model of the vocational training problem 

in a company using neutrosophic logic, hyperfunctions, 

and SuperHyperFunction. Neutrosophic Sets and 

Systems. 2025; 87:1-11. 

11. Liberty E, Sviridenko M. Greedy minimization of 

weakly supermodular set functions. In Approximation, 

Randomization, and Combinatorial Optimization. 

Algorithms and Techniques (APPROX/RANDOM 

2017). Schloss Dagstuhl–Leibniz-Zentrum für 

Informatik, 2017, 19-1. 

12. Law Bylinski C. Functions and their basic properties. 

Formalized Mathematics. 1990; 1(1):55-65. 

13. Musa IA, Alhasan YA. The integral of 2-refined 

rational neutrosophic functions. Neutrosophic Sets and 

Systems. 2025; 80(1):40. 

14. Pandey SK, Mishra PR, Poojary P. Classicalbalanced, 

antibalanced and neutrobalanced functions. 

Neutrosophic Sets and Systems. 2022; 48:386-398. 

15. Smarandache F. The SuperHyperFunction and the 

Neutrosophic SuperHyperFunction (revisited again) 

(Vol. 3). Infinite Study, 2022. 

16. Smarandache F, Şahin M, Bakbak D, Uluçay V, Kargın 

A. (Eds.). Neutrosophic SuperHyperAlgebra and New 

Types of Topologies. Infinite Study, 2023. 

17. Smarandache F. Foundation of superhyperstructure & 

neutrosophic superhyperstructure. Neutrosophic Sets 

and Systems. 2024; 63:367-381. 

18. Spartalis S. On the number of Hv-rings with P-

hyperoperations. Discrete Mathematics. 1996; 155(1-

3):225-231. 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

392 

19. Tak N. Type-1 recurrent intuitionistic fuzzy functions 

for forecasting. Expert systems with applications. 2020; 

140:112913. 

http://www.multiresearchjournal.com/

