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Abstract

Particle size distribution (PSD) is a critical quality attribute 

influencing dissolution, bioavailability, and 

manufacturability of pharmaceutical solid and suspension 

dosage forms. Traditional experimental approaches for 

particle size optimization and dissolution evaluation are 

time-consuming, resource-intensive, and often retrospective, 

limiting predictive capability. Recent advancements in 

artificial intelligence (AI) and machine learning (ML) offer 

transformative solutions by enabling data-driven prediction 

of PSD and its impact on dissolution behavior. Machine 

learning algorithms, including ensemble methods such as 

Light Gradient Boosting Machine (LightGBM) and artificial 

neural networks, can integrate formulation variables, 

process parameters, and analytical data to accurately predict 

particle size and polydispersity. These AI-based models 

facilitate early identification of critical formulation risks, 

support Quality by Design (QbD) principles, and reduce 

experimental workload. Moreover, coupling PSD 

predictions with dissolution modeling allows estimation of 

in vitro drug release profiles, particularly for poorly soluble 

drugs, without extensive repetitive testing. The integration 

of in-line and at-line particle size monitoring techniques 

with AI-driven models further enables real-time quality 

prediction and proactive process control. Despite these 

advantages, challenges remain in model interpretability, 

generalizability, regulatory acceptance, and dependence on 

high-quality datasets. Addressing these limitations through 

explainable AI, standardized validation, and robust data 

strategies is essential for broader industrial adoption. 

Overall, AI-based prediction of PSD–dissolution 

relationships represents a promising pathway toward 

knowledge-driven pharmaceutical development, offering 

accelerated formulation optimization, improved product 

quality, and alignment with regulatory and Pharma 4.0™ 

initiatives. 
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Introduction 

Model-based strategies have become integral to modern pharmaceutical drug development, offering effective pathways to 

reduce development time, experimental cost, and raw material consumption while consistently achieving the desired product 

quality [1]. These approaches are strongly aligned with contemporary regulatory frameworks, particularly the Quality by Design 

(QbD) principles outlined in ICH Q8 and the evolving Pharma 4.0™ concept promoted by the International Society for 

Pharmaceutical Engineering (ISPE). Together, these paradigms encourage systematic understanding of materials, processes, 

and product performance through data-driven and knowledge-based methodologies [2]. In recent years, artificial intelligence 

(AI) and machine learning (ML) techniques have gained increasing attention within pharmaceutical research and development. 

Their application spans a broad spectrum of activities, including drug discovery, formulation design, and, to a lesser extent, 

manufacturing process optimization. These data-centric approaches have demonstrated significant potential to reduce 

experimental burden, leverage routinely collected development and manufacturing data and formalize prior knowledge into 

predictive models capable of supporting informed decision-making [3]. Particle size is widely recognized as a critical material 

attribute with a profound influence on both drug product performance and manufacturability. In solid and suspension dosage 

forms, particle size directly affects dissolution behavior, with smaller particles offering increased surface area and, 
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consequently, enhanced dissolution rates that may improve 

bioavailability. However, particle size reduction can also 

introduce manufacturing challenges, such as poor 

flowability, reduced compressibility, increased risk of 

segregation, and variability in content uniformity and 

mechanical strength of final dosage forms. In suspension 

systems, inappropriate particle size distributions may further 

contribute to sedimentation, caking, and dose non-

uniformity, underscoring the need for precise particle size 

control [4]. Traditionally, particle size characterization has 

relied on off-line analytical techniques such as sieve 

analysis, laser diffraction (LD), and microscopy. While 

these methods are well established, they are often time-

consuming, operator-dependent, and unsuitable for real-time 

process monitoring and control. As the pharmaceutical 

industry increasingly adopts Process Analytical Technology 

(PAT) tools and continuous manufacturing (CM) platforms, 

there has been a clear shift toward in-line and at-line particle 

size measurement techniques [5]. Technologies such as 

spatial filtering velocimetry (SFV) and focused beam 

reflectance measurement (FBRM) enable real-time 

monitoring; however, each technique presents inherent 

limitations. LD typically assumes spherical particles and 

may provide misleading size distributions for non-spherical 

systems, while FBRM reports chord length distributions that 

do not always directly correlate with true particle size [6]. 

These analytical constraints complicate the establishment of 

robust particle size–performance relationships. Dissolution 

testing plays a pivotal role throughout pharmaceutical 

development, from early formulation screening to batch 

release and lifecycle management. Dissolution behavior is 

considered a critical quality attribute, particularly for poorly 

soluble drugs and complex dosage forms [7]. Despite its 

importance, conventional dissolution testing remains 

resource-intensive and retrospective in nature, offering 

limited predictive capability during formulation 

development and process optimization. The integration of 

QbD and PAT concepts has created a demand for predictive 

tools capable of linking material attributes, such as particle 

size distribution, to dissolution performance in a proactive 

and knowledge-driven manner [8]. The convergence of AI, 

ML, and machine vision presents a promising opportunity to 

overcome these challenges. ML algorithms are well suited to 

handle complex, high-dimensional datasets and can uncover 

non-linear relationships between particle size characteristics 

and dissolution behavior that are often overlooked by 

traditional statistical approaches. By integrating particle size 

data obtained from off-line or in-line analytical techniques 

with formulation, process, and dissolution data, AI-based 

models can enable accurate prediction of dissolution profiles 

for both solid and suspension dosage forms. Such predictive 

frameworks support rapid formulation optimization, reduced 

experimental workload, and enhanced process 

understanding. This article explores the application of AI-

based modeling approaches for predicting particle size–

dissolution relationships in solid and suspension dosage 

forms. Emphasis is placed on the role of machine learning in 

integrating particle size analytics, dissolution performance, 

and manufacturing considerations within a QbD and PAT-

enabled development framework. The potential of these 

approaches to accelerate pharmaceutical development, 

improve product quality, and support regulatory-aligned, 

data-driven decision-making is critically discussed [9]. 

 

AI & Machine Learning in PSD Prediction 

Particle size distribution (PSD) is a critical quality attribute 

influencing dissolution, stability, and bioavailability of 

pharmaceutical dosage forms, particularly suspensions and 

poorly soluble solid products [10]. Traditional trial-and-error 

approaches for controlling PSD are time-consuming and 

resource-intensive. Recent studies have demonstrated that 

artificial intelligence (AI) and machine learning (ML) 

techniques offer powerful alternatives for predicting PSD 

based on formulation and process variables. Machine 

learning models such as Light Gradient Boosting Machine 

(LightGBM), artificial neural networks (ANNs), and deep 

learning frameworks (e.g., Keras-based models) have been 

successfully applied to predict mean particle size and 

polydispersity index (PDI) in pharmaceutical suspension 

formulations [11]. 

 

 
 

Fig 1: AI & Machine Learning in PSD Prediction 

 

These models utilize formulation parameters (drug 

concentration, stabilizer type and concentration) and process 

conditions (mixing speed, homogenization time) as inputs to 

generate accurate PSD predictions. Among the evaluated 

algorithms, ensemble learning methods such as LightGBM 

demonstrated superior predictive performance due to their 

ability to handle nonlinear relationships and complex 

interactions between formulation variables [12]. Neural 

network–based models further improved prediction accuracy 

when large and diverse datasets were available, highlighting 

the importance of data quality and model training in 

pharmaceutical AI applications [13]. AI-based PSD 

prediction enables early identification of critical formulation 

risks and supports Quality by Design (QbD) principles by 

linking material attributes and process parameters to final 

product quality. Accurate PSD prediction is particularly 

important for suspension dosage forms, where particle 

agglomeration and size variability directly affect dissolution 

rate and content uniformity [14]. Furthermore, the integration 

of AI models with experimental data reduces development 

timelines and minimizes experimental failures. However, 

challenges remain related to model interpretability, 

regulatory acceptance, and the need for robust external 

validation before routine industrial implementation [15]. 

Overall, AI and machine learning represent transformative 

tools for PSD prediction, providing a foundation for 

advanced modelling of downstream performance attributes 

such as dissolution behavior in both solid and suspension 

dosage forms [16]. 

 

AI Models Linking Particle Size Distribution (PSD) to 

Dissolution 

Particle size is a well-established determinant of dissolution 

and absorption behavior, particularly for poorly soluble 

drugs belonging to Biopharmaceutics Classification System 

(BCS) class II. Variations in particle size distribution (PSD) 

can lead to significant changes in dissolution rate, making 
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PSD a critical quality attribute for many pharmaceutical 

products [17]. Consequently, there is a growing need for 

predictive dissolution models that can estimate in vitro drug 

release behavior based on PSD and related material 

attributes [18]. Recent studies demonstrate that dissolution 

rates can be successfully predicted by integrating 

experimentally determined PSD data into mathematical 

frameworks such as population balance models (PBMs). 

These models describe particle-level phenomena including 

nucleation, growth, aggregation, and breakage, which 

collectively influence dissolution kinetics [19]. 

 

 
 

Fig 2: AI Models Linking Particle Size Distribution (PSD) to 

Dissolution 

 

When PSD is used as an input parameter, PBMs enable 

reliable prediction of dissolution profiles without extensive 

repetitive dissolution testing. Advances in artificial 

intelligence (AI) and machine vision have further 

strengthened this approach by enabling real-time 

measurement of component-specific PSD in powder blends 
[20]. The PSD data obtained through AI-based object 

detection techniques can be directly linked to dissolution 

prediction models, allowing in vitro dissolution profiles of 

dosage forms such as capsules and tablets to be estimated in 

real time. Experimental results have shown a clear 

correlation between particle size and dissolution behavior, 

where smaller particles dissolve more rapidly while larger 

particles exhibit slower dissolution [21]. The performance of 

these integrated AI–PSD–dissolution models have been 

validated using similarity and difference factors, 

demonstrating acceptable agreement between predicted and 

experimental dissolution profiles. This confirms the 

robustness and reliability of AI-enabled dissolution 

prediction strategies [22]. By combining in-line PSD 

measurement with predictive modeling, these approaches 

represent a significant advancement in pharmaceutical 

process analytical technology (PAT), enabling proactive 

quality control and reducing reliance on traditional, time-

consuming dissolution testing. Overall, AI-driven models 

linking PSD to dissolution offer a promising pathway 

toward real-time quality prediction, enhanced process 

understanding, and more efficient pharmaceutical product 

development and manufacturing [23]. 

 

Machine Learning for Particle Size Development 

Machine learning (ML) techniques are increasingly being 

recognized as effective tools for predicting particle size 

outcomes during pharmaceutical product development. 

Particle size is a critical quality attribute that plays a major 

role in determining dissolution behavior, bioavailability, and 

overall product performance [24]. The ability of ML models 

to learn complex relationships between formulation 

variables and process conditions makes them particularly 

well suited for particle size prediction tasks. Recent studies 

have demonstrated the successful application of ML-based 

regression models to predict final particle size in processes 

such as spray drying. These models utilize key formulation 

and processing parameters including feed concentration, 

inlet temperature, atomization conditions, and solvent 

composition as input variables [25].  

 

 
 

Fig 3: Machine Learning for Particle Size Development 

 

By training on experimentally generated datasets, ML 

algorithms are able to establish robust correlations between 

processing conditions and particle size outcomes. Among 

the various modeling approaches evaluated, ensemble-based 

algorithms have consistently shown superior predictive 

accuracy compared to traditional linear regression methods. 

This improved performance is attributed to their capacity to 

capture nonlinear interactions and multivariate dependencies 

inherent in pharmaceutical manufacturing processes. Model 

performance is commonly assessed using statistical 

indicators such as the coefficient of determination (R²) and 

root mean square error, which confirm the reliability of ML-

based predictions [26]. Despite these advantages, the 

predictive capability of ML models is highly dependent on 

the size, diversity, and quality of the training dataset. 

Limited data availability can restrict model accuracy, and 

extrapolation beyond the defined experimental design space 

remains a significant challenge [27]. Nevertheless, ML-driven 

particle size prediction offers substantial benefits by 

reducing experimental workload, accelerating development 

timelines, and supporting quality-by-design (QbD) strategies 

through proactive control of particle size during 

pharmaceutical manufacturing [28]. 

 

Emerging Trends and Limitations 

The application of artificial intelligence and machine 

learning (ML) in pharmaceutical formulation and analytical 

development has expanded rapidly in recent years. These 

data-driven approaches are increasingly being used to 

predict critical quality attributes, particularly particle size 

distribution (PSD) and polydispersity index (PDI), by 

correlating formulation composition and process parameters 
[29]. Advances in ML algorithms, supported by growing 

experimental datasets, have significantly enhanced the 

accuracy and reliability of PSD prediction models. Among 

the various modeling approaches, ensemble learning 

techniques such as Light Gradient Boosting Machine 

(LightGBM) have shown superior predictive performance 

across diverse datasets [30]. The integration of ML tools with 

formulation and process variables represents a promising 

strategy to accelerate pharmaceutical development, reduce 

experimental burden, and support quality-by-design (QbD) 

initiatives [31]. These trends indicate a shift toward more 

predictive, data-centric approaches in pharmaceutical 

analysis and manufacturing. Despite these advancements, 

several limitations hinder the widespread adoption of ML-
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based models in pharmaceutical applications [32]. Model 

performance remains highly dependent on the size, 

diversity, and quality of available datasets. Inadequate or 

imbalanced datasets can lead to reduced prediction 

accuracy, particularly for certain manufacturing techniques 

such as antisolvent precipitation [33-37]. Additionally, many 

ML models exhibit limited generalizability due to 

formulation-specific or process-specific training data. 

Another major challenge is the interpretability of complex 

ML models, which continues to be a concern for industrial 

implementation and regulatory acceptance [38-40]. Black-box 

modeling approaches may conflict with regulatory 

expectations for transparency and scientific understanding. 

Furthermore, the lack of standardized datasets and the need 

for external validation present additional barriers to routine 

implementation in regulated environments. Addressing these 

challenges through improved data strategies, model 

interpretability, and regulatory alignment will be critical for 

the future integration of AI-driven predictive models in 

pharmaceutical analysis [41-46]. 

 

Conclusion 

Artificial intelligence–based modeling approaches represent 

a transformative advancement in understanding and 

predicting the complex relationship between particle size 

distribution (PSD) and dissolution behavior in both solid 

and suspension dosage forms. As particle size remains a 

critical quality attribute influencing dissolution, 

bioavailability, manufacturability, and product stability, the 

ability to predict its impact using data-driven methods offers 

substantial advantages over traditional empirical and trial-

and-error approaches. The application of machine learning 

techniques, including ensemble learning methods, artificial 

neural networks, and deep learning frameworks, has 

demonstrated strong potential for accurately predicting PSD 

based on formulation composition and processing 

parameters. When integrated with dissolution modeling 

strategies, these AI-driven approaches enable reliable 

estimation of dissolution profiles, particularly for poorly 

soluble drugs and complex dosage forms. The incorporation 

of real-time or in-line PSD data through PAT tools, 

combined with AI-based predictive models, further 

strengthens the capability to achieve proactive quality 

control and enhanced process understanding.AI-enabled 

prediction of particle size–dissolution relationships aligns 

closely with Quality by Design (QbD) principles and 

supports regulatory expectations for systematic, science-

based pharmaceutical development. By reducing 

experimental burden, minimizing development timelines, 

and enabling informed decision-making within the design 

space, these models facilitate more efficient formulation 

optimization and manufacturing robustness. In suspension 

systems, where PSD directly governs dissolution rate, 

sedimentation behavior, and dose uniformity, AI-driven 

predictive frameworks offer particular value for ensuring 

consistent product performance. Despite the demonstrated 

benefits, challenges remain in terms of data availability, 

model interpretability, generalizability, and regulatory 

acceptance. The performance of AI models is inherently 

dependent on high-quality, diverse datasets, and the use of 

complex “black-box” algorithms may limit transparency and 

confidence in regulated environments. Addressing these 

limitations through improved data strategies, incorporation 

of explainable AI techniques, standardized validation 

practices, and closer alignment with regulatory guidance 

will be essential for broader industrial adoption.Overall, AI-

based prediction of PSD–dissolution relationships represents 

a promising pathway toward more predictive, efficient, and 

knowledge-driven pharmaceutical development. Continued 

integration of machine learning with PAT, continuous 

manufacturing, and mechanistic modeling approaches is 

expected to further advance real-time quality prediction and 

control. As these technologies mature, AI-driven 

frameworks are poised to play a central role in enabling 

next-generation pharmaceutical manufacturing under the 

Pharma 4.0™ paradigm. 
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