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Abstract
Particle size distribution (PSD) is a critical quality attribute predictions with dissolution modeling allows estimation of
influencing dissolution, bioavailability, and in vitro drug release profiles, particularly for poorly soluble

manufacturability of pharmaceutical solid and suspension
dosage forms. Traditional experimental approaches for
particle size optimization and dissolution evaluation are
time-consuming, resource-intensive, and often retrospective,
limiting predictive capability. Recent advancements in
artificial intelligence (Al) and machine learning (ML) offer
transformative solutions by enabling data-driven prediction
of PSD and its impact on dissolution behavior. Machine
learning algorithms, including ensemble methods such as
Light Gradient Boosting Machine (LightGBM) and artificial
neural networks, can integrate formulation variables,
process parameters, and analytical data to accurately predict
particle size and polydispersity. These Al-based models
facilitate early identification of critical formulation risks,
support Quality by Design (QbD) principles, and reduce

drugs, without extensive repetitive testing. The integration
of in-line and at-line particle size monitoring techniques
with Al-driven models further enables real-time quality
prediction and proactive process control. Despite these
advantages, challenges remain in model interpretability,
generalizability, regulatory acceptance, and dependence on
high-quality datasets. Addressing these limitations through
explainable Al, standardized validation, and robust data
strategies is essential for broader industrial adoption.
Overall, Al-based prediction of PSD-dissolution
relationships represents a promising pathway toward
knowledge-driven pharmaceutical development, offering
accelerated formulation optimization, improved product
quality, and alignment with regulatory and Pharma 4.0™
initiatives.
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Introduction
Model-based strategies have become integral to modern pharmaceutical drug development, offering effective pathways to
reduce development time, experimental cost, and raw material consumption while consistently achieving the desired product
quality ['1. These approaches are strongly aligned with contemporary regulatory frameworks, particularly the Quality by Design
(QbD) principles outlined in ICH Q8 and the evolving Pharma 4.0™ concept promoted by the International Society for
Pharmaceutical Engineering (ISPE). Together, these paradigms encourage systematic understanding of materials, processes,
and product performance through data-driven and knowledge-based methodologies 2. In recent years, artificial intelligence
(AD) and machine learning (ML) techniques have gained increasing attention within pharmaceutical research and development.
Their application spans a broad spectrum of activities, including drug discovery, formulation design, and, to a lesser extent,
manufacturing process optimization. These data-centric approaches have demonstrated significant potential to reduce
experimental burden, leverage routinely collected development and manufacturing data and formalize prior knowledge into
predictive models capable of supporting informed decision-making [*1. Particle size is widely recognized as a critical material
attribute with a profound influence on both drug product performance and manufacturability. In solid and suspension dosage
forms, particle size directly affects dissolution behavior, with smaller particles offering increased surface area and,
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consequently, enhanced dissolution rates that may improve
bioavailability. However, particle size reduction can also
introduce manufacturing challenges, such as poor
flowability, reduced compressibility, increased risk of
segregation, and variability in content uniformity and
mechanical strength of final dosage forms. In suspension
systems, inappropriate particle size distributions may further
contribute to sedimentation, caking, and dose non-
uniformity, underscoring the need for precise particle size
control ™. Traditionally, particle size characterization has
relied on off-line analytical techniques such as sieve
analysis, laser diffraction (LD), and microscopy. While
these methods are well established, they are often time-
consuming, operator-dependent, and unsuitable for real-time
process monitoring and control. As the pharmaceutical
industry increasingly adopts Process Analytical Technology
(PAT) tools and continuous manufacturing (CM) platforms,
there has been a clear shift toward in-line and at-line particle
size measurement techniques . Technologies such as
spatial filtering velocimetry (SFV) and focused beam
reflectance measurement (FBRM) enable real-time
monitoring; however, each technique presents inherent
limitations. LD typically assumes spherical particles and
may provide misleading size distributions for non-spherical
systems, while FBRM reports chord length distributions that
do not always directly correlate with true particle size [©l.
These analytical constraints complicate the establishment of
robust particle size—performance relationships. Dissolution
testing plays a pivotal role throughout pharmaceutical
development, from early formulation screening to batch
release and lifecycle management. Dissolution behavior is
considered a critical quality attribute, particularly for poorly
soluble drugs and complex dosage forms [". Despite its
importance, conventional dissolution testing remains
resource-intensive and retrospective in nature, offering
limited  predictive  capability = during  formulation
development and process optimization. The integration of
QbD and PAT concepts has created a demand for predictive
tools capable of linking material attributes, such as particle
size distribution, to dissolution performance in a proactive
and knowledge-driven manner [, The convergence of Al,
ML, and machine vision presents a promising opportunity to
overcome these challenges. ML algorithms are well suited to
handle complex, high-dimensional datasets and can uncover
non-linear relationships between particle size characteristics
and dissolution behavior that are often overlooked by
traditional statistical approaches. By integrating particle size
data obtained from off-line or in-line analytical techniques
with formulation, process, and dissolution data, Al-based
models can enable accurate prediction of dissolution profiles
for both solid and suspension dosage forms. Such predictive
frameworks support rapid formulation optimization, reduced
experimental ~ workload, and  enhanced  process
understanding. This article explores the application of Al-
based modeling approaches for predicting particle size—
dissolution relationships in solid and suspension dosage
forms. Emphasis is placed on the role of machine learning in
integrating particle size analytics, dissolution performance,
and manufacturing considerations within a QbD and PAT-
enabled development framework. The potential of these
approaches to accelerate pharmaceutical development,
improve product quality, and support regulatory-aligned,
data-driven decision-making is critically discussed .
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Al & Machine Learning in PSD Prediction

Particle size distribution (PSD) is a critical quality attribute
influencing dissolution, stability, and bioavailability of
pharmaceutical dosage forms, particularly suspensions and
poorly soluble solid products ['9), Traditional trial-and-error
approaches for controlling PSD are time-consuming and
resource-intensive. Recent studies have demonstrated that
artificial intelligence (AI) and machine learning (ML)
techniques offer powerful alternatives for predicting PSD
based on formulation and process variables. Machine
learning models such as Light Gradient Boosting Machine
(LightGBM), artificial neural networks (ANNs), and deep
learning frameworks (e.g., Keras-based models) have been
successfully applied to predict mean particle size and
polydispersity index (PDI) in pharmaceutical suspension
formulations [,
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Fig 1: Al & Machine Learning in PSD Prediction

These models utilize formulation parameters (drug
concentration, stabilizer type and concentration) and process
conditions (mixing speed, homogenization time) as inputs to
generate accurate PSD predictions. Among the evaluated
algorithms, ensemble learning methods such as LightGBM
demonstrated superior predictive performance due to their
ability to handle nonlinear relationships and complex
interactions between formulation variables [?!. Neural
network—based models further improved prediction accuracy
when large and diverse datasets were available, highlighting
the importance of data quality and model training in
pharmaceutical Al applications [, Al-based PSD
prediction enables early identification of critical formulation
risks and supports Quality by Design (QbD) principles by
linking material attributes and process parameters to final
product quality. Accurate PSD prediction is particularly
important for suspension dosage forms, where particle
agglomeration and size variability directly affect dissolution
rate and content uniformity [, Furthermore, the integration
of Al models with experimental data reduces development
timelines and minimizes experimental failures. However,
challenges remain related to model interpretability,
regulatory acceptance, and the need for robust external
validation before routine industrial implementation [13],
Overall, Al and machine learning represent transformative
tools for PSD prediction, providing a foundation for
advanced modelling of downstream performance attributes
such as dissolution behavior in both solid and suspension
dosage forms (1],

Al Models Linking Particle Size Distribution (PSD) to
Dissolution

Particle size is a well-established determinant of dissolution
and absorption behavior, particularly for poorly soluble
drugs belonging to Biopharmaceutics Classification System
(BCS) class II. Variations in particle size distribution (PSD)
can lead to significant changes in dissolution rate, making
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PSD a critical quality attribute for many pharmaceutical
products 71, Consequently, there is a growing need for
predictive dissolution models that can estimate in vitro drug
release behavior based on PSD and related material
attributes ['¥1. Recent studies demonstrate that dissolution
rates can be successfully predicted by integrating
experimentally determined PSD data into mathematical
frameworks such as population balance models (PBMs).
These models describe particle-level phenomena including

nucleation, growth, aggregation, and breakage, which
collectively influence dissolution kinetics [,
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Fig 2: Al Models Linking Particle Size Distribution (PSD) to
Dissolution

When PSD is used as an input parameter, PBMs enable
reliable prediction of dissolution profiles without extensive

repetitive  dissolution testing. Advances in artificial
intelligence (Al) and machine vision have further
strengthened this approach by enabling real-time

measurement of component-specific PSD in powder blends
(201 The PSD data obtained through Al-based object
detection techniques can be directly linked to dissolution
prediction models, allowing in vitro dissolution profiles of
dosage forms such as capsules and tablets to be estimated in
real time. Experimental results have shown a clear
correlation between particle size and dissolution behavior,
where smaller particles dissolve more rapidly while larger
particles exhibit slower dissolution !l. The performance of
these integrated AI-PSD-dissolution models have been
validated wusing similarity and difference factors,
demonstrating acceptable agreement between predicted and
experimental dissolution profiles. This confirms the
robustness and reliability of Al-enabled dissolution
prediction strategies 2. By combining in-line PSD
measurement with predictive modeling, these approaches
represent a significant advancement in pharmaceutical
process analytical technology (PAT), enabling proactive
quality control and reducing reliance on traditional, time-
consuming dissolution testing. Overall, Al-driven models
linking PSD to dissolution offer a promising pathway
toward real-time quality prediction, enhanced process
understanding, and more efficient pharmaceutical product
development and manufacturing 23,

Machine Learning for Particle Size Development

Machine learning (ML) techniques are increasingly being
recognized as effective tools for predicting particle size
outcomes during pharmaceutical product development.
Particle size is a critical quality attribute that plays a major
role in determining dissolution behavior, bioavailability, and
overall product performance 4. The ability of ML models
to learn complex relationships between formulation
variables and process conditions makes them particularly
well suited for particle size prediction tasks. Recent studies
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have demonstrated the successful application of ML-based
regression models to predict final particle size in processes
such as spray drying. These models utilize key formulation
and processing parameters including feed concentration,
inlet temperature, atomization conditions, and solvent
composition as input variables 2],
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Fig 3: Machine Learning for Particle Size Development

By training on experimentally generated datasets, ML
algorithms are able to establish robust correlations between
processing conditions and particle size outcomes. Among
the various modeling approaches evaluated, ensemble-based
algorithms have consistently shown superior predictive
accuracy compared to traditional linear regression methods.
This improved performance is attributed to their capacity to
capture nonlinear interactions and multivariate dependencies
inherent in pharmaceutical manufacturing processes. Model
performance is commonly assessed using statistical
indicators such as the coefficient of determination (R?) and
root mean square error, which confirm the reliability of ML-
based predictions % Despite these advantages, the
predictive capability of ML models is highly dependent on
the size, diversity, and quality of the training dataset.
Limited data availability can restrict model accuracy, and
extrapolation beyond the defined experimental design space
remains a significant challenge ?”). Nevertheless, ML-driven
particle size prediction offers substantial benefits by
reducing experimental workload, accelerating development
timelines, and supporting quality-by-design (QbD) strategies
through proactive control of particle size during
pharmaceutical manufacturing 2%,

Emerging Trends and Limitations

The application of artificial intelligence and machine
learning (ML) in pharmaceutical formulation and analytical
development has expanded rapidly in recent years. These
data-driven approaches are increasingly being used to
predict critical quality attributes, particularly particle size
distribution (PSD) and polydispersity index (PDI), by
correlating formulation composition and process parameters
21 Advances in ML algorithms, supported by growing
experimental datasets, have significantly enhanced the
accuracy and reliability of PSD prediction models. Among
the various modeling approaches, ensemble learning
techniques such as Light Gradient Boosting Machine
(LightGBM) have shown superior predictive performance
across diverse datasets 9. The integration of ML tools with
formulation and process variables represents a promising
strategy to accelerate pharmaceutical development, reduce
experimental burden, and support quality-by-design (QbD)
initiatives B!, These trends indicate a shift toward more
predictive, data-centric approaches in pharmaceutical
analysis and manufacturing. Despite these advancements,
several limitations hinder the widespread adoption of ML-
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based models in pharmaceutical applications 2. Model
performance remains highly dependent on the size,
diversity, and quality of available datasets. Inadequate or
imbalanced datasets can lead to reduced prediction
accuracy, particularly for certain manufacturing techniques
such as antisolvent precipitation 33371, Additionally, many
ML models exhibit limited generalizability due to
formulation-specific or process-specific training data.
Another major challenge is the interpretability of complex
ML models, which continues to be a concern for industrial
implementation and regulatory acceptance %49 Black-box
modeling approaches may conflict with regulatory
expectations for transparency and scientific understanding.
Furthermore, the lack of standardized datasets and the need
for external validation present additional barriers to routine
implementation in regulated environments. Addressing these
challenges through improved data strategies, model
interpretability, and regulatory alignment will be critical for
the future integration of Al-driven predictive models in
pharmaceutical analysis [4!46],

Conclusion

Artificial intelligence—based modeling approaches represent
a transformative advancement in understanding and
predicting the complex relationship between particle size
distribution (PSD) and dissolution behavior in both solid
and suspension dosage forms. As particle size remains a
critical ~ quality  attribute  influencing  dissolution,
bioavailability, manufacturability, and product stability, the
ability to predict its impact using data-driven methods offers
substantial advantages over traditional empirical and trial-
and-error approaches. The application of machine learning
techniques, including ensemble learning methods, artificial
neural networks, and deep learning frameworks, has
demonstrated strong potential for accurately predicting PSD
based on formulation composition and processing
parameters. When integrated with dissolution modeling
strategies, these Al-driven approaches enable reliable
estimation of dissolution profiles, particularly for poorly
soluble drugs and complex dosage forms. The incorporation
of real-time or in-line PSD data through PAT tools,
combined with Al-based predictive models, further
strengthens the capability to achieve proactive quality
control and enhanced process understanding.Al-enabled
prediction of particle size—dissolution relationships aligns
closely with Quality by Design (QbD) principles and
supports regulatory expectations for systematic, science-
based pharmaceutical development. By reducing
experimental burden, minimizing development timelines,
and enabling informed decision-making within the design
space, these models facilitate more efficient formulation
optimization and manufacturing robustness. In suspension
systems, where PSD directly governs dissolution rate,
sedimentation behavior, and dose uniformity, Al-driven
predictive frameworks offer particular value for ensuring
consistent product performance. Despite the demonstrated
benefits, challenges remain in terms of data availability,
model interpretability, generalizability, and regulatory
acceptance. The performance of AI models is inherently
dependent on high-quality, diverse datasets, and the use of
complex “black-box” algorithms may limit transparency and
confidence in regulated environments. Addressing these
limitations through improved data strategies, incorporation
of explainable Al techniques, standardized validation
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practices, and closer alignment with regulatory guidance
will be essential for broader industrial adoption.Overall, Al-
based prediction of PSD—dissolution relationships represents
a promising pathway toward more predictive, efficient, and
knowledge-driven pharmaceutical development. Continued
integration of machine learning with PAT, continuous
manufacturing, and mechanistic modeling approaches is
expected to further advance real-time quality prediction and
control. As these technologies mature, Al-driven
frameworks are poised to play a central role in enabling
next-generation pharmaceutical manufacturing under the
Pharma 4.0™ paradigm.
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