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Abstract

Modern enterprises operate within increasingly complex,
distributed, and adversarial digital environments, where
traditional compliance-driven security metrics fail to capture

frameworks established, the study synthesizes research from
cybersecurity engineering, adversary emulation, control
validation, cyber risk measurement, and large-scale security

the true effectiveness of defensive controls. As cyber threats
evolve in sophistication, frequency, and automation,
organizations face mounting pressure to measure how well
their security controls actually reduce adversary capability,
limit attack progression, and protect mission-critical assets
at scale. Threat-informed defence has emerged as a
paradigm that aligns security architecture, detection, and
response capabilities with empirically observed adversary
behaviours rather than abstract risk assumptions or static
control checklists. This paper examines advances in threat-
informed defence engineering models for measuring
security control effectiveness across large, heterogeneous

operations. The paper analyses how threat intelligence,
adversary tactics, techniques, and procedures (TTPs), and
operational telemetry can be integrated into engineering
models that quantify control coverage, detection efficacy,
response latency, and adversary disruption. A structured
conceptual perspective is developed to highlight
methodological trends, limitations, and research gaps in
scaling threat-informed measurement across complex
enterprise and critical infrastructure environments. The
study contributes to ongoing efforts to move cybersecurity
measurement from compliance-oriented indicators toward
evidence-based, adversary-centric performance assessment.

environments. Drawing exclusively on literature and
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1. Introduction
Cybersecurity has transitioned from a primarily perimeter-focused technical discipline into a complex systems engineering
challenge that spans technology, human behavior, organizational processes, and adversarial adaptation !'-2]. Large-scale digital
infrastructures including enterprise IT environments, cloud platforms, industrial control systems, and critical national
infrastructure are persistently targeted by capable and motivated adversaries [># 31 In this environment, the effectiveness of
security controls can no longer be assumed based on their mere presence or compliance with standards. Instead, organizations
increasingly require methods to measure whether controls meaningfully reduce risk in the face of real, observed threats [6 781,
Historically, security control effectiveness has been inferred through indirect indicators such as policy compliance, audit
results, maturity models, or adherence to best-practice frameworks * 1. While these approaches provide governance and
baseline assurance, they offer limited insight into how well controls perform against active adversaries. Compliance-oriented
metrics often focus on whether a control exists, not whether it detects, prevents, or disrupts malicious activity in realistic attack
scenarios [': 121, This disconnect has been repeatedly highlighted following major cyber incidents, where organizations were
technically compliant yet operationally compromised [ 1413,
The growing recognition of this gap has driven interest in threat-informed defence, a paradigm that aligns security strategy,
architecture, and measurement with empirically grounded knowledge of adversary behavior !¢ !7]. Threat-informed defence
emphasizes understanding how attackers operate, which techniques they employ, and how defensive controls perform against
those techniques in practice. Rather than measuring security in isolation, this approach evaluates controls in the context of
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adversary campaigns, kill chains, and operational tradecraft
[18, 19]

As digital ecosystems scale, the challenge of measuring
security control effectiveness becomes significantly more
complex (2% 21 Targe organizations may operate tens of
thousands of endpoints, multiple cloud environments, hybrid
networks, and diverse application stacks. Security controls
span preventive, detective, and responsive layers, including
identity systems, endpoint protection, network monitoring,
logging infrastructure, and incident response workflows 2>
21, Measuring effectiveness across this landscape requires
engineering models capable of aggregating heterogeneous
data, accounting for control interactions, and capturing
performance under realistic threat conditions.

Engineering perspectives are particularly valuable in this
context because they emphasize system behavior,
performance under stress, feedback loops, and scalability [+
25 261 Security controls can be viewed as engineered
components within a defensive system whose effectiveness
depends on design assumptions, operating conditions, and
adversary pressure (2" 28, From this viewpoint, threat-
informed defence engineering seeks to answer questions
such as whether controls provide sufficient coverage against
known adversary techniques, whether detection occurs early
enough to disrupt attack progression, and whether response
mechanisms meaningfully degrade attacker capability 2% 3%,
The emergence of adversary behavior frameworks has
significantly influenced this shift. Structured representations
of attacker tactics, techniques, and procedures provide a
common language for mapping threats to controls and
evaluating defensive coverage 13! 321, These representations
support systematic reasoning about which attack paths are
feasible, which controls are relevant at each stage, and
where defensive gaps exist. When combined with telemetry
from real systems such as logs, alerts, and response
outcomes they enable empirical evaluation of control
performance 33341,

However, translating threat-informed concepts into scalable
measurement models remains challenging. Adversary
behavior is probabilistic, adaptive, and context-dependent
35, 36, 371 Control performance varies across environments,
configurations, and operational maturity. Data sources are
noisy, incomplete, and often siloed % 3% Moreover,
organizations differ widely in mission priorities, risk
tolerance, and architectural constraints. As a result, there is
no single metric or model that universally captures security
effectiveness at scale %41,

The problem is further complicated by the dynamic nature
of cyber threats. Attackers continuously evolve their
techniques to evade detection, exploit new technologies, and
abuse legitimate system features. Static measurement
approaches quickly become outdated >4}, Threat-informed
defence engineering therefore requires continuous
reassessment, feedback mechanisms, and learning processes
that adapt to changing threat landscapes. Measuring
effectiveness is not a one-time exercise but an ongoing
operational capability.

Despite these challenges, significant progress has been made
in developing models and methods for threat-informed
measurement. Advances in adversary emulation, purple-
team exercises, continuous control validation, attack
simulation, and security analytics have provided practical
mechanisms for testing defences against realistic threat
scenarios [ 431 Research has also explored quantitative
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metrics for detection coverage, dwell time reduction,
response effectiveness, and adversary cost imposition. These
efforts reflect a broader shift toward evidence-based
cybersecurity decision-making.

At the same time, gaps remain in how these approaches are
integrated, standardized, and scaled. Many threat-informed
activities are still conducted as periodic exercises rather than
continuous processes. Metrics are often local to specific
tools or teams, making enterprise-wide aggregation difficult.
There is limited consensus on how to translate adversary-
centric measurements into strategic risk indicators that
inform governance and investment decisions 46471,

Against this backdrop, this paper examines advances in
threat-informed defence engineering models for measuring
security control effectiveness at scale [“®. The study
synthesizes literature across cybersecurity engineering,
threat intelligence, adversary modeling, security metrics,
and large-scale operations, focusing on established work 4],
Rather than proposing a new framework, the paper analyses
existing approaches, identifies common conceptual
foundations, and highlights methodological trends and
limitations B% 31,

The objectives of the paper are threefold. First, it seeks to
clarify how threat-informed defence has reshaped thinking
about security control effectiveness measurement. Second, it
reviews engineering-oriented models and methods used to
operationalize this paradigm at scale. Third, it identifies
research gaps and challenges that must be addressed to
achieve robust, scalable, and decision-relevant measurement
in complex environments.

The remainder of the paper is structured as follows. Section
2 presents a comprehensive literature review covering
adversary-centric defence models, control effectiveness
measurement, attack simulation and validation, and large-
scale security analytics. Section 3 synthesizes these findings
into a conceptual discussion of threat-informed defence
engineering. Section 4 discusses implications for practice
and research, followed by concluding remarks.

2. Literature Review

The literature on measuring security control effectiveness
has evolved alongside broader changes in how cybersecurity
risk is conceptualized and managed [-3!. Early work focused
on compliance, control presence, and maturity assessment,
reflecting regulatory and audit-driven priorities ™ 6. Over
time, limitations of these approaches became evident,
particularly in environments facing persistent, adaptive
adversaries. This section reviews key strands of literature
relevant to threat-informed defence engineering, including
control measurement paradigms, adversary modeling,
validation techniques, and scalability considerations %21,
Initial approaches to security measurement were largely
checklist-based, emphasizing whether controls were
implemented in accordance with standards and policies.
Frameworks developed by organizations such as National
Institute of Standards and Technology and ISO provided
structured catalogues of controls intended to reduce risk
across confidentiality, integrity, and availability domains 5
34 While these frameworks improved baseline hygiene and
comparability, researchers noted that they offered limited
insight into how controls performed against specific attack
techniques or threat actors 31,

This critique led to growing interest in outcome-oriented
metrics that assess whether controls actually prevent, detect,
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or respond to malicious activity. Studies began to explore
indicators such as incident rates, mean time to detect, and
recovery time 1% 37 381 However, these metrics were often
reactive and influenced by reporting biases, making causal
attribution difficult. A low incident rate, for example, could
reflect effective defences or simply undetected compromise.
The emergence of adversary-centric models marked a
significant shift. By explicitly modeling attacker behavior,
researchers could reason about how controls interact with
attack sequences. One of the most influential developments
in this area was the widespread adoption of the MITRE
ATT&CK knowledge base, which systematized adversary
tactics and techniques observed in real operations [*% 60 611,
This representation enabled mapping between attack
techniques and defensive controls, providing a structured
basis for assessing coverage and gaps.

Building on such models, threat-informed defence literature
emphasized the importance of aligning security architecture
with adversary tradecraft. Rather than treating all threats as
equal, organizations were encouraged to prioritize controls
based on relevant threat actors and likely attack paths. This
prioritization logic underpinned new approaches to control
effectiveness measurement, where effectiveness was defined
relative to specific adversary behaviours rather than abstract
risk categories.

Adversary emulation and purple-team methodologies further
advanced this thinking 2. By simulating realistic attack
scenarios, defenders could empirically test whether controls
detected or blocked specific techniques. Research showed
that such exercises often revealed blind spots not apparent
through compliance audits alone 1. Importantly, these
methods generated measurable outcomes, such as detection
success rates and response timelines, which could be
aggregated across scenarios [6% 641,

Parallel work explored continuous control validation and
automated attack simulation. These approaches sought to
scale adversary testing beyond periodic exercises by
leveraging automation to repeatedly test controls against
libraries of attack techniques. Studies highlighted the
potential of these methods to provide near-real-time
feedback on control performance, particularly in large,
dynamic environments %, However, concerns were also
raised regarding realism, false confidence, and the need for
careful scenario selection.

Measurement at scale introduces additional challenges
related to data volume, heterogeneity, and integration. Large
enterprises generate vast amounts of security telemetry,
including logs, alerts, and contextual data. Transforming this
raw data into meaningful effectiveness metrics requires
robust analytics pipelines and consistent data models.
Research in security analytics emphasized the importance of
normalization, correlation, and context enrichment to avoid
misleading conclusions [¢°,

Quantitative modeling approaches have also been explored.
Some studies applied probabilistic models, attack graphs,
and Bayesian networks to estimate the likelihood of
successful compromise given specific control configurations
(67 Others examined economic and game-theoretic models
to assess how controls influence attacker cost and decision-
making 8], While promising, these models often rely on
simplifying assumptions and face challenges in parameter
estimation at scale.

The concept of resilience has increasingly influenced control
effectiveness measurement. Rather than focusing solely on
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prevention, researchers argued for metrics that capture
detection speed, containment effectiveness, and recovery
capability. From this perspective, a control is effective if it
reduces attacker dwell time, limits lateral movement, or
enables rapid restoration of services, even if initial
compromise occurs [ 701,

Another strand of literature examined the organizational and
human dimensions of threat-informed defence. Studies
emphasized that controls do not operate in isolation but are
embedded within socio-technical systems. Analyst expertise,
process maturity, communication flows, and decision
authority all affect how effectively controls function in
practice. Measurement models that ignore these factors risk
overstating technical effectiveness [7!1.

Despite growing consensus on the value of threat-informed
approaches, the literature also highlights significant gaps.
There is limited standardization in effectiveness metrics,
making cross-organizational comparison difficult 7% 73 741,
Many studies focus on narrow contexts, such as specific
tools or attack scenarios, limiting generalizability.
Additionally, few models fully address how to aggregate
local effectiveness measurements into enterprise-level risk
indicators that support strategic decision-making [7% 76771,
Overall, the literature reflects a transition from static,
compliance-driven =~ measurement  toward  dynamic,
adversary-centric  evaluation. Threat-informed defence
engineering models represent an attempt to formalize this
transition by integrating adversary knowledge, empirical
testing, and systems-level analytics. However, achieving
scalable, reliable, and decision-relevant measurement
remains an open research challenge.

3. Threat-Informed Defence Engineering Models for
Measuring Security Control Effectiveness

The transition from compliance-driven cybersecurity to
threat-informed defence necessitates a corresponding
evolution in how security control effectiveness is
conceptualized, engineered, and measured. In large-scale
digital environments, security controls function not as
isolated safeguards but as interacting components within a
complex socio-technical system that is continuously
challenged by adaptive adversaries. Threat-informed
defence engineering models seek to formalize this
complexity by embedding adversary behavior, operational
telemetry, and system dynamics into structured
measurement approaches that can operate at enterprise scale.
At a fundamental level, threat-informed defence engineering
reframes security effectiveness as a question of adversary
interaction. Rather than asking whether a control exists or
meets a predefined standard, the engineering perspective
asks how a control influences an attacker’s ability to achieve
objectives, progress through an attack sequence, or maintain
persistence. This shift moves measurement away from static
checklists toward dynamic performance assessment
grounded in observed and plausible threat activity. In this
sense, effectiveness becomes conditional and contextual,
varying with threat actor capability, technique selection,
environmental configuration, and defender response.

3.1 Engineering View of Security Controls as Defensive
Systems

From an engineering standpoint, security controls can be
modelled as functional components within a defensive
system whose purpose is to constrain adversary behavior.
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Preventive controls aim to block actions, detective controls
seek to observe and signal malicious activity, and responsive
controls act to contain, eradicate, or recover from
compromise. In threat-informed models, these functions are
evaluated not independently but in terms of how they
interact along adversary attack paths.

Engineering models often represent this interaction through
abstractions such as attack graphs, kill chains, or technique
sequences. Each adversary technique represents a stress
input to the system, while security controls represent
defensive mechanisms that may reduce the probability of
success, increase detection likelihood, or impose time and
resource costs on the attacker. Effectiveness, therefore, is
not binary but expressed through measurable changes in
system behavior, such as delayed attack progression,
increased detection coverage, or reduced dwell time.

This system-oriented view aligns with broader engineering
principles in which performance is assessed under realistic
operating conditions. Just as reliability engineering
evaluates how systems behave under load or failure
conditions, threat-informed defence evaluates how security
architectures perform when subjected to adversarial
pressure. Measurement models must therefore account for
uncertainty, partial failures, and cascading effects,
particularly in large environments where controls may
perform unevenly across assets.

3.2 Threat Modeling as the Foundation of Measurement
Threat-informed defence engineering models rely on
explicit threat modeling to define the scope and context of
effectiveness measurement. Threat modeling in this context
goes beyond high-level risk statements to incorporate
detailed representations of adversary tactics, techniques,
procedures, and objectives. These representations serve as
the reference against which control performance is
evaluated.

By anchoring measurement to specific adversary
behaviours, organizations can avoid generic metrics that
lack operational relevance. For example, measuring the
effectiveness of endpoint detection controls becomes
meaningful when evaluated against specific execution,
persistence, or privilege escalation techniques relevant to the
organization’s threat landscape. This approach also enables
prioritization, as not all adversary behaviours carry equal
risk across all environments.

Threat modeling supports scalability by providing a
common abstraction layer. Rather than attempting to
enumerate every possible attack, engineering models group
behaviours into technique classes that can be systematically
mapped to controls. This abstraction allows measurement to
be aggregated across thousands of assets while remaining
grounded in realistic threat scenarios.

3.3 Control Coverage and Adversary Technique
Mapping

A central component of threat-informed defence engineering
models is the mapping between adversary techniques and
defensive controls. This mapping enables systematic
evaluation of coverage, defined as the extent to which
controls are capable of preventing, detecting, or responding
to specific techniques. Coverage is not merely the presence
of a control but its functional applicability to a given
behavior.
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Engineering models often distinguish between theoretical
coverage and observed coverage. Theoretical coverage
reflects design intent, such as a control’s documented
capability to detect a certain class of activity. Observed
coverage, by contrast, reflects empirical evidence from
telemetry, testing, or emulation that the control actually
performs as expected in the operational environment. The
discrepancy between these two is a critical indicator of
effectiveness gaps.

At scale, coverage measurement requires automation and
normalization. Large organizations may deploy multiple
overlapping controls, each with different visibility and
fidelity. Threat-informed models support aggregation by
expressing coverage in terms of technique-level
effectiveness rather than tool-specific metrics. This allows
organizations to reason about defensive posture even as
underlying technologies evolve.

3.4 Empirical Validation and Control Performance
Testing

Threat-informed defence engineering emphasizes empirical
validation as a cornerstone of effectiveness measurement.
Rather than assuming control performance based on
configuration or vendor claims, engineering models
incorporate evidence derived from adversary emulation,
attack simulation, red teaming, and continuous validation
activities.

Empirical testing transforms abstract threat models into
observable system responses. When a simulated adversary
executes a technique, the resulting telemetry reveals whether
controls generate alerts, whether those alerts are timely and
accurate, and whether response actions are triggered. These
observations can be translated into quantitative metrics such
as detection probability, alert latency, and response success
rates.

Scaling  empirical  validation presents challenges,
particularly in large environments where exhaustive testing
is impractical. Engineering models address this by sampling
representative scenarios, focusing on high-risk techniques,
and automating validation where feasible. The goal is not to
test every possible permutation but to establish confidence
bounds around control performance under realistic threat
conditions.

3.5 Measurement of Detection, Response, and Disruption
Traditional security metrics often emphasize detection
counts or alert volumes, which provide limited insight into
effectiveness. Threat-informed defence engineering models
instead focus on metrics that reflect adversary disruption.
Detection effectiveness is evaluated not only in terms of
whether activity is detected but also when detection occurs
relative to adversary progress.

Early detection metrics capture whether controls identify
malicious activity before critical objectives are achieved,
such as lateral movement or data exfiltration. Response
effectiveness metrics assess whether containment actions
prevent further compromise, reduce attacker dwell time, or
limit blast radius. Disruption metrics consider whether
defensive actions force attackers to abandon techniques,
change tactics, or incur additional cost.

These metrics are inherently temporal and relational. They
require correlating adversary actions, control signals, and
response outcomes across time and across system
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boundaries. Engineering models therefore emphasize data
integration and correlation as prerequisites for meaningful
measurement.

3.6 Aggregation
Environments
One of the defining challenges addressed by threat-informed
defense engineering is scalability. Large enterprises may
consist of multiple business units, geographic regions, and
technology  stacks, each with different control
implementations and threat exposure % 1. Measurement
models must therefore support aggregation without
obscuring meaningful variation.

Engineering approaches address this through hierarchical
modeling. Local measurements at the asset or control level
are aggregated into higher-level indicators that reflect
system-wide posture. For example, technique-level coverage
metrics can be aggregated to reflect overall detection
capability against a class of adversaries, while still allowing
drill-down into specific gaps.

Normalization is essential for aggregation B% 31 Metrics
must be expressed in comparable units, such as
probabilities, time intervals, or coverage ratios, rather than
raw counts. This enables meaningful comparison across
environments and supports trend analysis over time.

and Scaling Across Enterprise

3.7 Incorporating
Adaptation

A distinguishing feature of threat-informed defense
engineering models is their explicit acknowledgment of
uncertainty and adversary adaptation. Adversaries learn
from defensive failures, change techniques, and exploit
blind spots. Measurement models that assume static
behavior risk becoming obsolete.

Engineering models therefore incorporate uncertainty
through probabilistic representations, confidence intervals,
or scenario-based analysis % 331 Rather than asserting
absolute effectiveness, they express degrees of confidence
that controls will perform under certain conditions. This
approach aligns with risk-informed decision-making and
avoids false precision.

Adversary adaptation is addressed through continuous
measurement and feedback loops. By regularly validating
controls against updated threat models and observed
activity, —organizations can detect degradation in
effectiveness and adjust defenses accordingly B4+ 8],
Measurement thus becomes part of an adaptive control
system rather than a static reporting function.

Uncertainty and  Adversary

3.8 Linking Effectiveness Measurement to Decision-
Making

Ultimately, the value of threat-informed defense engineering
models lies in their ability to inform decisions. Measurement
outputs must be interpretable and actionable by different
stakeholders, from security engineers to executive
leadership % 87, Engineering models support this by
translating technical metrics into indicators aligned with
mission impact, risk reduction, and investment priorities.
For example, demonstrating that certain adversary
techniques consistently bypass detection can justify targeted
investment in new controls or improved telemetry 38,
Conversely, evidence that multiple controls provide
overlapping coverage against low-risk techniques may
support resource reallocation % %1, By grounding decisions
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in empirically derived effectiveness data, threat-informed
models strengthen the link between security operations and
strategic governance.

3.9 Summary of Section

This section has outlined how threat-informed defence
engineering models conceptualize and measure security
control effectiveness at scale. By treating controls as
components within an adversary-facing system, grounding
measurement in explicit threat models, emphasizing
empirical validation, and supporting aggregation across
complex environments, these models offer a structured
alternative to compliance-based metrics. While challenges
remain particularly in data quality, scalability, and adversary
adaptation the engineering perspective provides a robust
foundation for advancing evidence-based cybersecurity
measurement.

4. Discussion

The analysis presented in this paper highlights a
fundamental shift in how security control effectiveness is
understood and evaluated in large-scale digital
environments.  Threat-informed defence engineering
represents a departure from traditional compliance-oriented
and maturity-based assessment models by grounding
measurement in adversary behavior, operational evidence,
and system performance under stress [ %2 This shift
reflects a broader recognition within the cybersecurity
community that static indicators of control presence or
policy adherence are insufficient proxies for real-world
defensive capability, particularly in the face of persistent
and adaptive threats [> %4,

One of the most significant implications of threat-informed
defence engineering is its reframing of effectiveness as a
contextual and dynamic property rather than a fixed attribute
of a control > %, In conventional models, controls are often
evaluated in isolation, with effectiveness implied by design
specifications or benchmark alignment. In contrast, threat-
informed approaches demonstrate that effectiveness is
contingent on how controls interact with specific adversary
techniques, how quickly they respond, and how consistently
they perform across heterogeneous environments. This
contextualization enables more nuanced interpretation of
defensive posture, revealing that a control may be highly
effective against certain behaviours while offering little
value against others P73,

The engineering perspective adopted in this paper also
underscores the importance of empirical validation in
cybersecurity measurement > 1% Evidence derived from
adversary emulation, attack simulation, and continuous
control testing challenges long-standing assumptions about
control performance. Multiple studies reviewed in the
literature suggest that controls frequently underperform
relative to expectations due to misconfiguration,
environmental variability, or adversary evasion techniques
[101, 1021 By incorporating empirical testing into measurement
models, organizations gain visibility into these discrepancies
and can move beyond aspirational security architectures
toward evidence-based improvement. This emphasis on
validation aligns cybersecurity more closely with other
engineering disciplines, where performance claims are
routinely tested under realistic conditions 1%,

Scalability emerges as both a key motivation for and a
central  challenge  within  threat-informed  defence
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engineering. Large enterprises require measurement
approaches that can aggregate performance data across
thousands of assets, multiple security tools, and diverse
operational contexts without losing analytical fidelity [14],
The discussion reveals that abstraction at the level of
adversary techniques and attack paths is essential for
achieving this balance. Technique-centric metrics allow
organizations to reason about coverage and gaps
independently of specific vendors or implementations,
supporting longitudinal analysis even as technologies
change %), However, achieving reliable aggregation
remains difficult, particularly when data quality varies
across environments or when telemetry is incomplete.
Another important insight concerns the role of time in
effectiveness measurement. Traditional metrics often lack
temporal resolution, obscuring whether detection or
response occurred early enough to matter [1°). Threat-
informed models explicitly incorporate timing, recognizing
that delayed detection can render technically successful
alerts operationally irrelevant. Metrics such as time-to-
detect, time-to-contain, and time-to-recover provide a more
accurate reflection of defensive performance, particularly in
campaigns where attackers can achieve objectives rapidly
[107. 18] " This temporal focus also aligns measurement with
operational decision-making, as response prioritization and
escalation depend heavily on timing considerations.

The discussion also highlights the growing relevance of
resilience-oriented metrics within threat-informed defence.
As complete prevention becomes increasingly unrealistic,
effectiveness must be understood in terms of limiting
adversary impact rather than -eliminating compromise
entirely. Measuring how well controls constrain lateral
movement, protect critical assets, or enable rapid recovery
provides a more realistic assessment of defensive success.
This perspective is particularly important for large, complex
environments where some level of compromise may be
inevitable, but catastrophic failure is not. Threat-informed
engineering models thus support a more mature
understanding of cybersecurity as risk management rather
than absolute security.

Despite these advances, the literature and analysis reveal
several persistent limitations. One challenge is the lack of
standardization in threat-informed effectiveness metrics [!%%
1101 While common frameworks exist for describing
adversary behavior, there is less consensus on how to
quantify defensive success against those behaviours.
Organizations often develop bespoke metrics tailored to
their tools and workflows, which limits comparability and
knowledge sharing. This fragmentation suggests a need for
further research into standardized, technique-level
performance indicators that retain flexibility while enabling
broader benchmarking [ 1121,

Another limitation lies in the treatment of human and
organizational factors. Although threat-informed
engineering models emphasize systems and controls, their
effectiveness is heavily influenced by analyst expertise,
incident response processes, and organizational decision
structures. Alerts that are technically accurate may still fail
to disrupt adversaries if they are ignored, misinterpreted, or
acted upon too slowly [''> 4 The discussion therefore
reinforces the argument that control effectiveness
measurement must extend beyond technical artifacts to
encompass socio-technical dynamics. Integrating human
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performance indicators into threat-informed models remains
an open research challenge (115 116],

Data availability and quality also constrain the practical
application of these models U7 1181 High-fidelity
measurement depends on comprehensive logging, consistent
telemetry, and accurate threat intelligence. Many
organizations lack full visibility into their environments,
particularly in legacy systems or third-party platforms [!°
120l Measurement models that rely heavily on automation
and analytics risk producing misleading results if underlying
data is sparse or biased. This limitation suggests that threat-
informed defense engineering must be accompanied by
investment in foundational observability and data
governance capabilities [12> 1221,

Adversary adaptation presents a further challenge to
sustained measurement validity. As defenders improve
coverage against known techniques, attackers evolve their
tradecraft, potentially rendering existing metrics obsolete
[123, 1241 Threat-informed models mitigate this risk by
emphasizing continuous reassessment and feedback loops,
but this requires ongoing threat intelligence integration and
measurement updates [>> 1261, The discussion indicates that
effectiveness measurement should be viewed as a living
process rather than a static reporting function, with models
periodically recalibrated to reflect emerging behaviours ['?
128]

From a governance and decision-making perspective, the
discussion highlights both opportunities and risks [12% 139,
Threat-informed effectiveness metrics have the potential to
significantly improve investment decisions by linking
control performance to adversary impact reduction 3% 132
1331 However, poorly contextualized metrics may also create
false confidence or misaligned incentives. For example,
optimizing for detection counts without -considering
response outcomes could encourage noisy alerting rather
than meaningful disruption. Effective use of threat-informed
measurement therefore requires careful interpretation and
alignment with organizational objectives [134],

Overall, the discussion suggests that threat-informed
defence engineering provides a robust conceptual
foundation for advancing security control effectiveness
measurement at scale. Its strengths lie in its adversary-
centric orientation, emphasis on empirical validation, and
systems-level perspective [13% 1361 At the same time, its
successful application depends on addressing challenges
related to standardization, human factors, data quality, and
adversary evolution. These considerations point toward
fertile areas for future research and underscore the need for
interdisciplinary collaboration between security engineers,
data scientists, organizational researchers, and decision-
makers [137-138],

5. Conclusion

This paper set out to examine how threat-informed defence
engineering models advance the measurement of security
control effectiveness in large-scale and complex digital
environments. By synthesizing research across cybersecurity
engineering, adversary modeling, control validation, and
operational analytics, the study demonstrates that traditional
compliance-oriented approaches are no longer sufficient for
understanding real defensive capability. As cyber threats
continue to evolve in sophistication and scale, measuring
effectiveness must move beyond the question of whether
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controls exist toward whether they meaningfully disrupt
adversary activity in practice.

A central conclusion of this work is that threat-informed
defence reframes security effectiveness as a dynamic,
contextual property shaped by adversary behavior, system
design, and operational response. Engineering models
grounded in adversary tactics, techniques, and procedures
enable more precise reasoning about how controls perform
under realistic attack conditions. This adversary-centric
perspective allows organizations to identify coverage gaps,
prioritize defensive investments, and evaluate performance
in ways that are directly tied to mission impact rather than
abstract risk categories. By treating security controls as
interacting components within a defensive system, threat-
informed engineering aligns cybersecurity measurement
with established principles from systems and reliability
engineering.

The paper also highlights the critical role of empirical
validation in establishing credible effectiveness metrics.
Evidence derived from adversary emulation, attack
simulation, and continuous testing provides a practical basis
for assessing how controls behave under stress. Such
validation exposes discrepancies between intended and
actual performance, revealing blind spots that would
otherwise remain hidden behind compliance metrics. When
scaled appropriately, empirical testing supports continuous
learning and adaptation, reinforcing the view that security
effectiveness measurement is an ongoing operational
capability rather than a periodic audit exercise.

Another important finding is the growing relevance of
temporal and resilience-oriented metrics. In contemporary
threat environments, the speed of detection and response
often matters more than absolute prevention. Measuring
time-to-detect, time-to-contain, and recovery performance
provides deeper insight into whether controls limit attacker
dwell time and reduce potential impact. This shift toward
resilience acknowledges that some degree of compromise
may be unavoidable in large systems, but that effective
defences can still prevent escalation and catastrophic
outcomes. Threat-informed engineering models are
particularly well suited to capturing these dynamics, as they
explicitly link defensive actions to stages of adversary
progression.

Despite these strengths, the study also underscores several
limitations and open challenges. The lack of standardized,
widely accepted metrics for threat-informed effectiveness
complicates comparison across organizations and
environments. Human and organizational factors such as
analyst decision-making, workflow efficiency, and
governance structures remain difficult to quantify but exert
significant influence on defensive outcomes. Data quality
and visibility constraints further limit the reliability of
measurement models, especially in environments with
incomplete telemetry or heavy reliance on third-party
platforms. Moreover, adversary adaptation continually
threatens to erode the wvalidity of static measurement
approaches, reinforcing the need for continuous
reassessment and integration of updated threat intelligence.
In practical terms, the findings suggest that organizations
adopting threat-informed defence engineering should view
measurement as both a technical and organizational
endeavour. Success depends not only on analytical models
and tooling, but also on investment in observability,
workforce capability, and decision processes that can act on
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measurement insights. When effectively implemented,
threat-informed effectiveness metrics can support more
rational allocation of security resources, strengthen
communication between technical teams and leadership, and
improve alignment between defensive operations and
strategic risk objectives.

In conclusion, threat-informed defence engineering models
offer a compelling pathway for advancing security control
effectiveness measurement at scale. By grounding
evaluation in adversary behavior, empirical evidence, and
systems-level reasoning, these models address fundamental
shortcomings of compliance-based approaches and provide
a more realistic assessment of defensive capability. While
significant challenges remain in standardization, scalability,
and integration of human factors, the threat-informed
paradigm represents a critical step toward evidence-based,
adaptive cybersecurity management. Future research and
practice will benefit from continued refinement of these
models, empirical validation across diverse environments,
and closer integration with organizational decision-making
frameworks to ensure that measurement translates into
meaningful risk reduction.
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