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Abstract

At previous publication series, the Molecular Effect Model 

(MEM) with Interior and Graphical Optimization was 

presented. That study comprised Type I and Type II 

superconductors materials, both classical and modern ones. 

This study shows 2D-3D advances in MEM for important 

Cuprates superconductors and new applications of MEM to 

determine-compute Carnot Factor. Imaging-processing in 

2D-3D and numerical results with two systems, GNU-

Octave and Matlab, are proven and detailed. An improved 

review of previous contributions in Isotope Effect Interior 

Optimization for Hg is included. Applications in Electronics 

Physics Superconductors modelling are explained. 

Keywords: Molecular Effect M (MEM), Interior Optimization (IO) Methods, Polynomial Fitting (PF), Graphical Optimization 

(GO), Systems of Nonlinear Equations, Tikhonov Regularization (TR), Inverse Least Squares (ILS), Electronics 

Superconductors, High-Temperature Superconductors (HTSC), BCS Theory, Carnot Factor (CF) 

1. Introduction and Objectives 

This article continues a series of superconductivity mathematical modelling publications, based on 2D-3D Interior and 

Graphical Optimization [Refs-8, 1-12]. Today, SC and HTSC constitute a research field/applications framework with quite 

unpredictable practical/theoretical rapid advances. The Critical Temperature predictions in function of material composition 

for engineering/manufacturing applications is an important part of the SC and HTSC efficacious usage.  

 

1.1 Fundamental Concepts 

The determination of critical temperature (TC) in superconductors Type I and Type II is crucial for power engineering, physics, 

and industrial applications [Refs-7, 1-9]. The superconductivity research field is an open area whose new advances and 

applications number is increasing recently. Along a series of articles and a book, [Refs-8, 1-11], 3D Interior Optimization 

mathematical methods were developed for modelling the classical-exponential BCS equation for classical Type I (TC) 

determination. Inspired mathematically from Isotope Effect, but with a different modeling technique, the Molecular Effect 

Model (MEM) for Type II High Temperature Superconductors was primarily built up. In that research line, 2D-3D Interior and 

Graphical Optimization modeling-methods were applied for MEM in cuprates, Example-Figure 1.  

Therefore, this new contribution presents advances for MEM model in HTSC cuprates, one of the most important families in 

HTSC. In addition, the practical Carnot Factor, [Refs-7, 1-2], applied on superconductivity for cuprates, is optimized in 2D-3D 

imaging-processing and numerical data.  

Results comprise a database of BCS and MEM (TC) values for Type I and Type II superconductors. The challenges for future 

SC and HTSC research are described in Table 1, [Casesnoves, 2021, author’s proposal]. Then, some views in this field for the 

future superconductivity advances are also included Tables 1-2, [Refs-9, 49]. Consequently, the article has two main strands. 

Namely, the improvements for MEM in HTSC cuprates, and Carnot Factor 2D-3D Graphical Optimization. Additionally, an 

extended/complemented review of Hg Isotope Effect, 2D-3D Graphical/Interior Optimization, set in simplified 

concepts/graphs, is presented. Future trends and research lines/areas for HTSC are shown in Tables 1-2. Engineering and 

Physics applications are briefed. 
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Table 1: Improved-modified from a previous conference 

publication, [Refs-8, 11], Author’s proposal about future 

superconductivity, strategic research lines according Overview of 

possible future developments/applications for SC and HTSC 

applications in transmission lines 
 

 
 

Table 2: From a previous conference publication, [Refs-8, 11] 

future strategic research lines according [Refs-9, 49, Sarrao, J; 

Nault, R. (2006). This is a briefing of future investigation areas. 

Those are basic research needs for superconductivity] criteria. 

Note: that is an overview and brief resume with data of a 

prestigious institution among other conferences about SC and 

HTSC research institutes 
 

 
 

 
 

Example-Figure 1.- Molecular Effective Model got for 

Cuprates with minimum error. For example, inset, according 

to Table 3, [Abs-Error ≤ 8 K] for approx [605, 1420] 

molecular mass and Tc around [95,140] K. That is, the 

approximation of MEM matches published experimental Tc 

[Refs-7, 1,2]. Note that in this tentative program imaging-

processing the surface graphical optimization is rather 

complicated but fits approximately experimental results. 

Observe the shape similarities between the 3D surface 

parabolic geodesics and the 2D parabolic curves of Figure 1. 

The Table 3 Cuprates shows a parabolic-numerical-shape 

with approximately the same TC for low molecular masses, 

and high ones, while for intermediate molecular mass 

magnitudes the TC values are the highest. Just that is proven 

at this MEM computational-graphical optimization.  

 

1.2 Research Objectives 

Research objectives are mainly two. The first one is to 

improve the Molecular Effect Model for cuprate HTSC from 

previous publications, [Refs-8, 1-13]. Secondly, to begin the 

study of Carnot factor for HTSC by using MEM models. 

Complementary and illustrative, to review the precision 

obtained with Interior Optimization Method for Hg, which is 

useful as Hg is a chemical element whose isotopes show a 

varied statistical composition in this natural element, [Refs-

7, 1-3]. Applications for HTSC electronics physics are 

briefed.  

Grosso modo, this article shows improvements for 

Molecular effect Model for cuprates and findings for 2D-3D 

Graphical optimization cuprates Carnot Factor. 

Complementary an improved review of Hg Isotope Effect 

and electronics physics applications are detailed.  

 

2. Mathematical and Computational Methods 

The programming techniques are related to previous 

research [Refs-8, 1-9, Refs-8, 19-23] and dual-program 

design [Refs-8, 9-10]. Along those articles, software and 

2D-3D imaging processing details with explanations are 

included. With the 2D polynomial fit data, it is possible to 

get approximations for further setting of Genetic Algorithms 

constraints and lower/upper boundaries, but that is not the 

study objective.  

 

2.1 Interior Optimization 

Interior Optimization is a method, [Refs-8, 1-9], that was 

developed computationally mainly for electronics physics 

applications, although is a mathematical-computational 

general method. Specifically was published, [Refs-8, 9], for 

Isotope Effect in several SC elements. Here was used for 

getting the best polynomial algorithm in the selected, Table 

3, HTSC cuprates.  

 

2.2 Graphical Optimization 

Graphical Optimization method was developed by Author in 

2016, mainly for metal hardness mathematical modelling, 

[Refs-9, 12]. Later on, in publication series for several 

research areas, [Refs-8, 1-10, Refs-9, 21]. Basically, this 

method involves the numerical fit of the objective function 

set in a 3D surface to find with precision the global, local, 

partial, desired-selected, or approximated minima. Here it is 

used to get the accurate difference in Kelvin degrees 

between Tc experimental, Table 3, and Tc of the model, 

results at Table 4. Note that since the 2D and 3D imaging-

processing charts, Figures 1-4, give a large numerical values 
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at prompt, it is possible guess the prediction of Tc for a 

different cuprate compound whose isotope composition 

makes difference from the standard experimental dataset, 

Table 3. That is in fact the objective-usage of the present 

study here.  

 

2.3 HTSC Cuprates Computational Dataset 

There are several Cuprates HTSC major families [Refs-7, 

1,3]. Namely, Hg-Ba-Ca-Cu (the subject of this study), 

Thallium-based cuprates, those compounds formed when Tl 

is substituted by Bi or when Ba is replaced by Sr, and some 

of them with Rare Earths. This study is based on Hg-Ba-Ca-

Cu-O compounds/family, as it is widely used in industry, 

Table 3. In that data-table HTSC cuprates show a parabolic-

shape distribution with approximately the same TC, Example 

Figure 1, for low molecular masses, and high ones. Instead, 

for intermediate places molecular mass magnitudes for 

corresponding TC values are the highest, Figure 1, Table 3. 

In such a way, the relative-numerical links among molecular 

masses and Tc was used for creating the Molecular Effect 

Model. It is inspired from classical Isotope Effect one [Refs-

7, 1-3, Refs-8, 1-3, 9-10]. Hg-Cuprate compounds show a 

very useful/practical Tc, and as an instance, it is about the 

night temperature of the moon, [Refs-7, 9]. 

 
Table 3: Software programming selected data with references for 

Cuprates Hg-Ba-Ca-Cu-O group [Refs-7, 1-3]. The criterion for 

ordering data was increasing molecular mass. Details are included 
 

 
 

2.4 Carnot Factor Optimization 

Carnot Factor (CF), is commonly used to optimize the 

industrial cost of superconductivity usage [Refs-7, 1,8,9]. It 

is based on the classical Carnot Cycle in Thermodynamic 

Physics. For refrigerator cycles, there is a large variety of 

thermodinamical ones, [Refs-7, 9]. Most applied theoretical 

cycles are the Carnot and Claude cycles, however the 

options are varied. The refrigerator whether liquid or gas 

constitutes an essential part of the cooling system. A 

classical refrigerator was liquid nitrogen, [77 K], [Refs-

7,1,8,9]. Recently, [e.g., 2016, Refs-7, 8] most applied for 

superconducting lines are liquid hydrogen (Tc = 20 K), 

liquid nitrogen, [77 K], liquid helium for Low Temperatures 

Superconductors [T= 4.2 K]. For superconductivity below 

[T =39 K], [Refs-7, 8], both helium gas or liquid nitrogen. 

Therefore, today Carnot Factor for thermodynamical 

efficiency continues being used effectively. In general, at [T 

= 4.2 K], the superconducting energy has not an 

economically optimal cost [Refs-7, 1]. The so-called 

Operation Temperature is fundamental parameter for Carnot 

Factor determination. An example is shown at [Refs-7, 1], 

namely ‘ to remove a heat input of 1 W an ideal, reversible 

refrigerator consumes at room temperature a power of 70 

W for Top = 4.2 K, whereas this power is only 2.9 W for 

operation at 77 K ‘. Critical current is another important 

constraint for the economic cost of superconductor devices, 

but not the focus of this study, [Refs-7, 1].  

In brief, the second objective of this research is to optimize 

in 2D-3D the CF for HTSC cuprates of Table 3. Hence the 

CF algorithm, [Refs-7, 1], reads, 

 

  (1) 

 

Where, 

CF: Carnot Factor (adimensional). 

K: Kelvin. 

Tcold= 300 K (usually). Note that in Figures 5-8, it is set 

at programs in intervals [275,326]. 

Toperating: Operating temperature of the superconductor 

device (K) [Refs-7, 1]. In Figures-software is set at 

[20,120] or [0,120] K. 

 

This formula is applied for 2D-3D numerical determinations 

in two ways. In 2D, first one is setting a range of Toperation 

interval [0, 120] K, and at the second, but computationally 

more difficult, implementing simultaneously a Tcold interval 

of [275, 325], Figure 5. Just the same second method was 

used for 3D CF surface, Figures 5-8. 

 

3. 2D-3D Graphical-Interior Optimization and 

Numerical Results  

Based on Subsections 2.2 and 2.3, the software-

programming results for these methods, graphical and 

numerical, are demonstrated /shown in the following, 

Figures 1-8,Table 4. 

 

3.1 2D-3D Graphical Cuprate MEM Optimization 

The graphical-interior simulations in 2D-3D are done by 

using and improving previous publications 

superconductivity software, [Refs-9, 1-10], mainly. 

According to Example Figure 1, the first step is to order 

database of Table 3 for programming. After that, a 

regression polynomial fit is designed in four phases to 

obtain a final continuous 3-degree optimal polynomial of Tc 

in function of the molecular mass, Figure 1. It was found no 

significant numerical precision difference between a 3-

degrees and a 4-degrees fit. The initial polynomial equation 

is set with further software to obtain a continuous model, 

through these successive steps, Figure 1, Equation (2). Both 

GNU-Octave and Matlab systems were/could be used for 

2D-3D graphics, and in most of cases programs are 

equivalent with few differences, Figures 1-4. Proven 

Molecular Effect Model: The parabolic shape of Figure 1 is 
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extrapolated to Figure 2, inset, red polygon, and model 

efficacy is demonstrated. 

 

 
 

Fig 1: GNU-Octave 2D Molecular Effective Model for Cuprates 

programming-construction with minimum error, four stages. As in 

Example Figure 1, these 2D approximations of MEM match 

published experimental Tc [Refs-7, 1-3], Table 3. From step 1 to 

step 4, it is demonstrated the efficacy of the polynomial fit, 

Equation (2). Note in this tentative program imaging-processing 

that the geodesic surface of Example Figure 1 indeed 

contains/shows these curves or integer approximations. Every 

curve shape from step 1 to step 4 has a different fitting software, 

and to obtain those stage by stage is rather complicated/laborious. 

The Table 3 Cuprates shows a parabolic-shape with approximately 

the same TC for low molecular masses, and high ones, while for 

intermediate molecular mass magnitudes the TC values are the 

highest. Just that is proven at this 2D MEM computational-

graphical optimization. Matlab programs for this 2D imaging-

processing are almost equivalent. Next Figure 2 demonstrates these 

parabolic shapes reproduced with precision at 3D MEM model 

 

 
 

Fig 2: Matlab 3D Molecular Effective Model for Cuprates with 

minimum error, marked inset numerical data. As in Example 

Figure 1, those 2D approximations of MEM match published 

experimental Tc. A polygon resembling the parabolic shape of the 

Figure 1, (inset, in red), shows the geodesic similarities with 2D 

curves of Figure 1. Note the low absolute errors (Z values) got with 

the polynomial MEM model, Equation (2). The matrices software 

to obtain this image-processing is rather difficult, not for program 

length, but for matrices congruence 

 

 
 

Fig 2.1: Matlab 3D Molecular Effective Model for Cuprates with 

Table 4 extracted dataset. It is intended to prove the absolute error 

improvements for the MEM model. Absolute error, according to 

this image and Table 4, is: 2D-3D abs errors (K); [0 ≤ Abs Error ≤ 

8] (K). Marked inset, numerical data. As in Example Figure 1, 

those 2D approximations of MEM match published experimental 

Tc. Note more clearly the low absolute errors (Z values) got with 

the polynomial MEM model, Equation (2). As in Figure 2, the 

matrices software to obtain this image-processing is rather difficult, 

not for program length, but for matrices congruence 

 

 
 

Fig 3: GNU-Octave 3D Molecular Effective Model for Cuprates 

with Table 3 extracted dataset. It is intended to show the absolute 

error improvements and error distribution along the surface (Notes 

inset). Absolute error, decreases at posterior surface part, and 

increases at anterior one. According to this image and Table 4, is: 

2D-3D abs errors (K); [0 ≤ Abs Error ≤ 8] (K). As in Matlab 

imaging-processing Figures 2, 2.1 the matrices software to obtain 

this image-processing is rather difficult, not for program length, but 

for matrices congruence. The GNU-Octave image processing 

quality is acceptable but Matlab is better 

 

 
 

Fig 4: This GNU-Octave image was programmed for showing 

clearly the geodesic error projections and surface curves marking 

the minima (squares or small polygons) curve from where the 

surface begins to get higher Z-coordinates at the posterior. That is, 

the minima geodesic projections where the surface begins to grow 

towards posterior and anterior directions are shown with those 

small squares. The image-processing subroutine at pattern is 

different from Figure 3 
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3.2 2D-3D Graphical Cuprate Carnot Factor (CF) 

Optimization 

According to Equation (1), CF constitutes a practical 

numerical reference for functional manufacturing and 

operating of SC and HTSC devices. Figure 5 was designed 

with 2D software-engineering inspired in [Refs-7, 1], but 

with variable intervals for both Toperation and Tcold (blue 

for fixed Tcold at 300 K, and red-dashed or black for 

variable intervals of Toperation and Tcold. It is proven that, 

even separating the curves (second chart right, x+10, y+10), 

the shapes are almost coincident. That is corroborated at 3D 

implementation, Figures 6-8. 

 

 
 

Fig 5: GNU-Octave 2D Carnot Factor for Cuprates with two 

programming techniques. Matlab programs for this 2D imaging-

processing are almost equivalent. Red dashed-line, inset left, shows 

variable intervals for both Toperation [0,120] K, and Tcold fixed at 

300 K, while the blue coincident line correspond to CF with Tcold 

[275,326] and Toperation [0,120]. At right, both curves are 

separated to prove almost total coincidence, that is, blue curve is 

for fixed Tcold at 300 K, and black one shows CF for Tcold 

interval [275,326]. For better visualization, the second methods, 

inset black, shows a small translation (second black curve, x+10, 

y+10), the shapes are almost coincident 

 

 
 

Fig 6: GNU-Octave 3D Carnot Factor model for Cuprates with 

Tcold interval [275,325] and Tcold one [0,120]. minimum error. 

Marked inset, the variable gradients. In other words, the lower CF, 

the lower operation power energy required. Besides, the lower CF, 

the higher operation temperature 

 

 
 

Fig 7: GNU-Octave 3D Carnot Factor model for Cuprates with 

Tcold interval [275,325] and Tcold one [0,120]. minimum error. 

Marked inset, the minimum CF zone, and the maximum Cf area. 

Matrices at program patterns have to be calculated precisely 

 

 
 

Fig 8: Matlab 3D Carnot Factor model for Cuprates with Tcold 

interval [275,325] and Tcold one [0,120]. minimum error. Marked 

inset with red-lines directions, the variable gradients. The lower 

CF, the lower operation power energy required. Besides, the lower 

CF, the higher operation temperature. Some numerical data are 

shown for illustration. Direction (1) proves the lower CF, the 

higher operation temperature at low Tcold (about 275 K). Direction 

(2) shows the higher Tcold, the higher CF, at low Toperation 

(about 20 K). Direction (3) proves the higher Tcold, the higher 

smoothly CF, at high Toperation (about 120 K) 

 

3.3 Numerical Results 

The numerical results have two strands. The first one is the 

MEM model equation that was used for Tc predictions in 

function of cuprates HTSC molecular mass. That is, the 

main algorithm since some variants were applied in specific 

programs. The second is the comparative numerical results 

that can be got from the Matlab and GNU-Octave 2D-3D 

plots. In Matlab it is easier and the cursor at prompt/display 

can give more numerical information. Table 4 shows some 

numerical-comparative results. The main algorithm obtained 

by polynomial fit reads, 

 

  (2) 

 

Where, 

Tc (M): Function of Critical Temperature (Tc) as 

function of Cuprates Molecular Mass (M) from Table 3 

dataset polynomial optimization. 

 

 

 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

1677 

Table 4: 2D-3D Cuprates MEM model with errors according to 

Figures 1-4. Absolute Error is [0 ≤ Abs Error ≤ 8] (K). Average 

2D-3D Error= 4.0633 K; (Figures 1-4). Results are improved from 

previous publications [Refs-8, 1-13] 
 

 
 

4. Briefing-Review of Hg Isotope Effect Interior 

Optimization 

This is a review about the fundamentals of Interior 

Optimization Method [Refs-8, 9, text-paragraphs and some 

images], focused on first chapters of [Refs-8, 9,13], and the 

initial invention articles, [Refs-8, 1-2]. In plain language, 

Interior Optimization is a numerical computational-

graphical method based on graphical variables separation 

techniques, which are applied in subsequent 3D imaging 

stages, which could be also 2D. That is, the analytical partial 

differential equations method basis is used to make a 

graphical-optimal numerical determination-selection 

through 3D/2D imaging-stages in order to select the 

best/desired values of any several variables algorithm. In 

this briefing, the mathematical and computational 

fundamentals of the method are shown with Hg Isotope 

Effect results. Initially, these techniques were designed for 

superconductor modelling optimization, specifically BCS 

Isotope Effect optimization, the Molecular Effect Model 

(MEM), and Superconducting Multifunctional Transmission 

Lines Project [Refs-8, 9, 12,13]. All these optimization 

approaches can be utilized for any science branch that could 

demand this necessary type of mathematical-computational 

methods. Interior Optimization Method is defined as 

follows, 

Definition I: Interior-Graphical Optimization Method, 

[Casesnoves, 2018] is a type of Nonlinear Optimization that 

combines separation of variables method with stages of 

Graphical Optimization [Casesnoves, 2016], [Interior 

Graphical-Optimization Methods were created by Francisco 

Casesnoves on 3rd November 2018, while he was preparing 

his Doctoral Thesis defence. First implementation of 

algorithms and computational-verification of simulations 

were carried out in the morning of April 1st, 2020]. 

In optimization with objective functions based on nonlinear 

systems of equations, or multiobjective-parameters 

constraints and other conditions, the task is rather difficult. 

Specifically this occurs in Physics and Engineering 

nonlinear optimization problems. Large-scale amount of 

empirical data for algorithms/models implementation have 

to be adapted/fitted to models that involve a high number of 

equations, nonlinear many of them, constraints added. 

Stochastic Optimization methods are used to save time and 

computational effort when the amount of data is large.In 

these cases, it is not necessary to work with all the 

numerical volume available. 

Approximations and final refinements for mathematical 

models are usually performed with inverse methods. 

Statistical-estimations/Approximations and errors testing are 

obtained from all alternative formulation available. In 

previous contributions, Graphical Optimization was 

presented and applied for engineering mathematical 

modelling, materials erosion models [Refs-9, 12,22,27], and 

physics of deformable solids dynamics. 

However, Graphical Optimization involves the objective 

function visualization in 2D-3D imaging-processing 

software. This implies that multiparameter formulas initially 

cannot be easily set for the 3D Graphical Optimization, 

unless a choice of 2 or 3 variables is done among several 

ones. From this apparent difficulty, a mathematical 

optimization and software engineering method for an 

objective function of high number of variables arose and is 

presented. It is defined as Interior-Graphical Optimization 

Method [Casesnoves, 2018]. This observed fact implied also 

that some complementary approaches to the theory of 

Nonlinear Equations systems could be done. 

Furthermore, in this line, it is proven for optimization that 

the solution for multiobjective optimization problems is not 

unique in general in [Refs-8, 9,13]. This occurs in nonlinear 

systems equations. The method was intended to be proven 

and set, at first, on simple equations at Electronics Physics 

field, namely BCS algorithms [Refs-8, 9,13]. Therefore, 

brief-direct applications in electronics field for 

superconductors isotope-effect and critical temperature are 

also presented. 

In summary, this briefing-review shows an advanced 

contribution for the Interior Nonlinear Optimization Method 

previously presented in [Refs-8, 9,12,13]. Mathematical and 

computational base is explained/proven for the classical 

superconductor Hg Type I. The scheme of the method is 

shown, with a sharp proof in applications at this electronics 

field. A clear demonstration that Nonlinear Systems do not 

have unique solution in general constitutes a supplementary 

mathematical frame of this paper can be found at [Refs-8, 

9,13]. 

 

4.1 Mathematical Methods and Algorithms and Matrix 

Algebra 

Linear systems are included in this study as a nonlinear ones 

with exclusively unitarian power and without nonlinear 

operations among parameters. Consider the multiobjective 

problem with constraints, 
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  (3) 

 

Where, 

f(X): Vectorial principal function. X is a vector of sub-

functions. 

f(xi): Sub-function component of principal function 

vector or matrix, every xi is a vector. Such as, 

F(X) = [f(xi),….. f(xN)] i = 1…..N. 

ai: Lower boundary constant. (i = 1…..N).  

bi: Upper boundary constant. (i = 1…..N).  

N: Number of matrix functions. 

This (3) is an equation of several variables that has not, in 

general, unique solution. If the objective function becomes 

an [i] number of nonlinear functions. Hence, 

 

  (4) 

 

Where, 

f(X): Vectorial principal function. X is a vector of sub-

functions. 

f(xi): Sub-function component of principal function 

vector or matrix, every xi is a variable-vector. Such as, 

f(X) = F [xi1, xi2…. xiN] i = 1…..N. The is a sub-function of 

N variables, everyone is a vector. 

ai: Lower boundary constant. (i = 1…..N).  

bi: Upper boundary constant. (i = 1…..N).  

N: Number of matrix functions. 

 

Therefore, it is a system of nonlinear equations functions 

with several variables, [Refs-9, 12,13,26], that in general 

case do not have to be equal in number to the parameters. If 

there are terms with operations among parameters, and 

roots, the unique solution is even more difficult to be find 

out. Optimization algorithms and software can find usually a 

local minimum, semi-global minimum, or a local minimum 

according to constraints. A classical method is Monte-Carlo 

programs, such as GEANT type, classically used in IMRT-

IMPT radiotherapy, although there are options for Monte-

Carlo and Quasi-Monte-Carlo software available. Jacobian 

and classical Newton-Raphson methods are, for example, 

used to find an approximate solution. Number of methods to 

find solution/approximate solutions for a system of 

nonlinear equations are extent, and it is not the specific 

focus of this contribution. Monte-Carlo method can be 

considered methods to find solution/approximate solutions 

for a system of nonlinear equations are extent. Monte-Carlo 

method can be considered good, because the program 

usually, taking continuous random values, search for an 

optimal solution of variables, no matter how many they are. 

Genetic Algorithms constitutes an stochastic method that 

has proven be very useful and precise nowadays. 

Given this algorithm, the Graphical and Interior 

Optimization Methods can be applied starting for grouping 

variables step by step. The technique is an extrapolation of 

the classical partial equations method of separation of 

variables. That is, 

 

  (5) 

 

Where, 

f(X): Vectorial principal function. X is a vector of one 

sub-function. 

f(xi): Sub-function component of principal function 

vector or matrix, every xi is a variable-vector.  

N: Number of matrix functions. 

xi: A variable-vector. S is the number of sub-functions. 

 

Or just the same parameters-grouping for sums, 

exponentials, etc. Thus, the technique begins with a 3D 

graph of two selected parameters, at Z axis the objective 

function. The optimal/desired values are fixed at that graph. 

Those fixed values are taken for the subsequent 3D graph 

that involves the following two parameters, and so on. 

What is done in mathematical concepts, is to apply the 

partial differential equations classical separation of variables 

method. With separation of variables, it is possible to 

optimize all the parameters in subsequent stages of 3D 

graphical optimization plots. At every plot, it is selected the 

desirable local, global, or semi-local minimum for the 

variable of convenience. 

In such a way that the initial Graphical Optimization begins 

with 3 variables, namely, first, second and objective 

function. An optimal value is determined. The following 

stage one parameter with two variables is decomposed, and 

it is taken the optimal values, and so on. 

Therefore, it is easy to prove, through the multi-selection of 

local and approximate minima at Graphical Optimization 

sets, that in general the multiobjective solution for a system 

of nonlinear equations is not unique. In other words, it is 

demonstrated from 3D visualization and separation of 

variables, this classical mathematical assertion. 

Number of graphs required depend on the number of 

variables of the nonlinear system of equations. The 

determination of optimal values not necessarily have to be 

minima. Optimal values taken depend of the engineering 

requirements for laboratory optimization, devices 

manufacturing, experimental plan, or similar tasks. The 

advantage is that the software engineering gives a fast tool 

to find necessary data immediately with short time 

consuming. 

 

4.2 Optimization Algorithms for Superconductor Isotope 

Effect 

In this section a brief summary of Superconductivity 

towards the Transition Equation and the Isotope Effect in 
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BCS Theory is presented. The Superconductivity Theory 

framework is rather extent and with large mathematical 

background. It involves Quantum Theory, Molecular 

Chemistry, Materials Physics and other science and 

engineering branches. All these areas converge together in 

Superconductors theory and applications. Which is useful to 

prove Interior Optimization Method are the simple equations 

of Transition-Temperature-Critical and Isotope Effect [Refs-

9, 37]. The classical-simple Critical Temperature Equation 

for superconductors reads, 

 

  (6) 

 

Where, 

K: Sub-function component of principal function vector 

or matrix, every xi is a vector. Such as, 

Mi = Atomic mass of every isotope. AMU. 

𝜶: Isotope effect constant power parameter. 

Adimensional. 

Tci: Critical Temperature of every isotope. Kelvin. 

i: Isotope number for everyone of them. 

 

From the stage when the solid reaches critical temperature, 

the superconductivity effect begins. TC varies for every 

isotope element within a defined mass element, although not 

excessively in magnitude. 

This equation, although simple, remains useful today. It was 

taken to illustrate Interior Optimization Method in simple 

way. The evolution of this equation, for example, [Refs-7, 

2], involves extent mathematical background and 

mathematical-physics theory. It is sufficient to prove the 

Interior Optimization Method with this classical equation. 

Just note that taking decimal or Neperian logarithms the 

equation (6) can be linearized for setting graphics related to 

different isotopes with corresponding atomic proper mass. 

To set the simplest nonlinear system of equations, for Hg 

Isotope Effect Interior Optimization, the algorithm selected 

with 100 equations reads, 

 

  (7) 

 

Where, 

Ki: Isotope Effect constant for every isotope. 

Mi = Atomic mass of every isotope. AMU. 

𝜶: Isotope effect constant power parameter. 

Adimensional. 

Tci: Critical Temperature of every isotope. Kelvin. 

i: Isotope number for everyone of them. 

a, a1: Lower and upper boundary constant for Mi. (i = 

1…..N). AMU. 

b, b1: Lower and upper boundary constant for Tci. (i = 

1…..N). Kelvin. 

c, c1: Lower and upper boundary constant for every Ki at 

implemented interval. (i = 1…..N).  

d, d1: Lower and upper boundary constant for every 𝜶I at 

implemented interval. (i = 1…..N). Adimensional. 

N: Number of isotopes. 

|| || L1: Chevyshev norm. 

 

Where i is the corresponding number within the range of 

simulations. For example, in range of simulations for Hg, M 

[Refs-7, 10-11] is, 

 

 M ϵ [199.5, 203.4] (8) 

 

In the same way, range of constraints can be seen in axes 

ranges of Figures 9-13. Therefore, with Equations 1-7, a 

nonlinear system of equations is set. The variables are to get 

optimized. The method is Interior-Graphical Optimization, 

that is proven accurate and useful for [Refs-8, 9]. It was 

taken Hg superconductivity values from literature [Refs-7, 

10-11]. Extrapolation to large and complicated Electronic 

Physics equations, Electronics, or any type of system can be 

guessed from this application. 

 

4.3 Software Engineering Dataset  

The software developed for this contribution had some easy 

parts and not a few programming difficulties to adapt the 

programs on Chebyshev L1 norm for objective function, 

Equations 1-7. Additional complications were the algebra 

changes in the subroutines to get functional the program for 

surface Graphical Optimization visualization. This requires 

mathematical changes-background. 

The software was developed in GNU-Octave and Matlab 

and is almost equivalent for Freemat also. These numerical 

data are all for this contribution. In previous contributions, 

higher values were taken for high-accuracy. Graphical 

Optimization programs were designed for double precision, 

since were based on engineering software of extent number 

of previous publications. 

To check complementarily the numerical results, both 

Fortran and F# subroutines in optimization were used. While 

Fortran proved to match the Graphical Optimization results, 

F# showed restrictions and obviously, limits that discarded 

this type of language for accurate results in nonlinear 

optimization. None of these F# numerical data were 

included in publication. 

 
Table 5: Dataset implemented in programs for Hg Interior 

Optimization. That is a classical experimental foundation of Hg 

superconductivity, [From Refs-7, 10 -11, experimental]. Dataset is 

at software patterns in intervals 
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4.4 Computational Graphical-Interior Optimization 

Results 

The results are shown in Tables and Graphics. Numerical 

results matches values in the literature for natural Hg. 

However, alpha value is lower than the classical magnitude 

of 0.5, from [Refs-7, 10-11]. 

Residuals can be considered acceptable, although not of 

high-precision accuracy. The time consuming for designing 

program is extremely short. The time for selecting optimal 

values is also very short with the Matlab graphical cursor. In 

engineering practice, this is a significant advantage that 

gives many options for fast on-site superconductivity data 

management at laboratory. Results confirm useful utility of 

Equations 1-7. 

 

 
 

Fig 9: GNU-Octave multiple imaging-processing for Hg advanced 

Interior-Graphical optimization. It was graphically determined the 

optimal K value and the power magnitude for constant α. First 

image is got with L1 Chevyshev norm. The others are set with 

simple OF. The first image shows intersection line of global 

minima line for alpha and K at XY plane. The others set at XY 

plane the alpha-Tc and Tc-Atomic-Mass numerical functions. At 

Z=0, can be sharply seen the global minima proof. Running time si 

about 2-4 seconds 

 

 
 

Fig 10: GNU-Octave imaging-processing for Hg advanced 

Interior-Graphical optimization. It was graphically determined the 

optimal K value and the power magnitude for constant α, inset 

marked global minima line. Image is got with L1 Chevyshev norm. 

It shows intersection line of global minima line for alpha and K at 

XY plane. Running time si about 2 seconds 

 

 
 

Fig 11: Matlab imaging-processing for Hg advanced Interior-

Graphical optimization. It was graphically determined the optimal 

K value and the power magnitude for constant α, inset marked 

global minima line. Image is got with L1 Chevyshev norm. It 

shows intersection line of global minima line for alpha and K at 

XY plane. Dataset, inset, is used for numerical results graphical 

calculations. Running time si about 2 seconds 

 

 
 

Fig 12: Matlab imaging-processing for Hg advanced Interior-

Graphical optimization. It was graphically determined the optimal 

K value and the power magnitude for constant α, inset marked 

global minima line. Image is got without L1 Chevyshev norm. It 

shows of global minima points-line for alpha and K at XY plane. 

Dataset, inset, is used for numerical results graphical calculations. 

Running time si about 2 seconds. At GNU-Octave graphics, the 

usual magnitude of alpha was around [0.490] 

 

 
 

Fig 13: Matlab multiimaging-processing for Hg advanced Interior-

Graphical optimization. It was graphically determined the optimal 

K value and the power magnitude for constant α, inset marked 

global minima line. First image is got with L1 Chevyshev norm, 

the others without. It is shown of global minima points-line for 

alpha and K at XY plane, alpha and Tc, and Tc and Atomic Mass. 

Dataset, inset, is used for numerical results graphical calculations. 

Running time si about 1-3 seconds. OF residuals at Z axis are low 
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Table 6: 2D-3D Interior-Graphical optimal results got from 

imaging-processing series. Results are sligthly lower than 

publications for Hg, [Refs-7, 10-11] 
 

 
 

5. Discussion and Conclusions 

The objectives of the research were to improve the 

Molecular Effect Model for HTSC Cuprates by using 2D-

3D Interior and Graphical Optimization. The MEM model 

built was based on an initial 3-degree polynomial fit taking 

Critical Temperatures related to HTSC Cuprates (Hg-Ba-

Ca-Cu-O) Molecular Masses. Second objective was to 

determine Carnot Factors 2D-3D imaging-processing dataset 

for up-to-date current cuprates.  

Results comprise a low-error MEM improved for Cuprates. 

2D-3D abs errors (K); [0 ≤ Abs Error ≤ 8] (K). Average 2D-

3D Error= 4.0633 K; (Figures 1-4). Although some errors 

are high, the statistical mode is low, then average error 

results be about 4 K. All errors are proven in 2D-3D 

imaging series, with corresponding numerical results. The 

Carnot Factor calculations are shown in 2D-3D charts for 

different Operating Temperature magnitudes. As a result 

from the software methods used, a series of new programs 

were got for software advances in Graphical and Interior 

Optimization. A review of Isotope Effect classical model 

was included from previous contributions [Refs-8, 1-13, 

book 9]. 

Results of improved software and imaging-processing for 

Hg Isotope Effect, Interior Optimization show advances 

both in 3D Interior Optimization and numerical results. The 

improved-review proves programming method, precision 

that matches literature database, namely [Refs-7, 10-11], 

and demonstrates the efficacious software implemented and 

method. The numerical magnitude precision for Hg SC Type 

I alpha constant is is improved at Table 6, lower than 

literature publications, [Refs-7, 10-11]  

Therefore, MEM presented shows errors [0 ≤ Abs Error ≤ 8] 

(K). These can be considered an advance from previous 

contributions. Efficacious utility of this MEM predictions 

for a range of isotopes are detailed in Tables 3-4.  

In summary, Molecular Effect Model improvements were 

got with Tc predictions for possible proportion variants in 

molecule isotopes composition. Secondly Carnot Factor for 

cuprates was optimized and presented in 2D-3D chart series. 

An improved-review of Hg Isotope Effect was included and 

Electronics Physics applications were explained.  

 

6. Scientific Ethics Standards 

Automatic Artificial Intelligence software was NOT used 

for Author’s original software-engineering in this article. If 

AI is used at any Author’s publication, it is referred. All 

images of this study are new and contain improved 

programming, [Casesnoves, May 7th, 2024] from previous 

publications [Refs-8, 1-13]. All mathematical algorithms are 

reviewed and improved. Methods from were begun be 

created by Dr Francisco Casesnoves in 3rd November 2007, 

and Interior Optimization Methods in 2019. This article has 

previous papers information, from [Refs-8, 9], whose 

inclusion is essential to make the contribution 

understandable. This study was carried out, and their 

contents are done according to the International Scientific 

Community and European Union Technology and Science 

Ethics [Refs-9, 45-47]. For example: ‘European Textbook 

on Ethics in Research’. European Commission, Directorate-

General for Research. Unit L3. Governance and Ethics. 

European Research Area. Science and Society. EUR 24452 

EN. Also based on ‘The European Code of Conduct for 

Research Integrity’. Revised Edition. ALLEA. 2017. This 

research was completely done by the author, the 

computational-software, calculations, images, mathematical 

propositions and statements, reference citations, and text is 

original for the author. When a mathematical statement, 

algorithm, proposition or theorem is presented, 

demonstration is always included. When a formula is 

presented, all parameters are detailed or referred. If any 

results inconsistency is found after publication, it is clarified 

in subsequent contributions. Note: The numerical value of 

Hg SC alpha constant has been found better from [Refs-8, 

9], it was a sligth magnitude inconsistency. When a citation 

such as [Casesnoves, ‘year’] is set, it is exclusively to clarify 

intellectual property at current times, without intention to 

brag. The article is exclusively scientific, without any 

commercial, institutional, academic, any religious, religious-

similar, no companies-influences, non-scientific theories, 

personal opinions, political ideas, or other economical 

influences. When anything is taken from a source, it is 

adequately recognized, or put anu mber in a remark.  
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