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Abstract

Machine learning (ML) algorithms have become integral to 

decision-making in various domains, including healthcare, 

finance, education, and law enforcement. However, 

concerns about fairness and bias in these systems pose 

significant ethical and social challenges. 

To evaluate and mitigate biases, three prominent fairness 

libraries-Fairlearn by Microsoft, AIF360 by IBM, and the 

What-If-Tool by Google were employed. These libraries 

provide robust frameworks for analyzing fairness, offering 

tools to evaluate metrics, visualize results, and implement 

bias mitigation strategies. 

The study aims to evaluate and mitigate biases in a 

structured dataset using classification models. The main aim 

of the paper is to present a comparative study for the 

performance of the mitigation algorithms in two fair-ness 

libraries by applying them individually one at a time in one 

of the three stages of the machine learning lifecycle (pre-

processing, in-processing, or post-processing), and applying 

the algorithms in a sequential order in different stages at the 

time. The findings demonstrate that some sequential order 

applications enhance the mitigation algorithms performance 

by reducing bias and maintaining the model performance. 

A publicly available dataset from Kaggle was selected for 

analysis, offering a realistic scenario for evaluating fairness 

in machine learning workflows. 
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1. Introduction 

Machine learning algorithms are widely used in various domains, including entertain-ment, shopping, healthcare, finance, 

education, law enforcement, and high-stakes areas like loans [1] and hiring decisions [2, 3]. They provide advantages such as 

tireless per-formance and the ability to process numerous factors [4, 5]. However, algorithms can also exhibit biases, leading to 

unfair outcomes [6, 7]. Bias in machine learning can lead to discriminatory outcomes, especially when decisions directly affect 

individuals or com-munities. Addressing these issues is essential to ensure that machine learning systems operate ethically and 

equitably. Fairness in decision-making requires the absence of prej-udice or favoritism based on inherent or acquired 

characteristics, and biased algorithms fail this standard by skewing decisions toward certain groups. 

The concept of ”fairness” in algorithmic systems is heavily influenced by the so-ciotechnical context. Various types of 

fairness-related harms have been identified: 

1. Allocation Harm: Unfair distribution of opportunities, resources, or information, such as an algorithm selecting men more 

often than women for job opportunities [8]. 

2. Quality-of-Service Harm: Disproportionate failures affecting certain groups, e.g., facial recognition misclassifying Black 

women more often than White men [9], or speech recognition underperforming for users with speech disabilities [10]. 

3. Stereotyping Harm: Reinforcement of societal stereotypes, such as image searches for ”CEO” predominantly showing 

photos of White men [8]. 

4. Denigration Harm: Offensive or derogatory outputs from systems, like misclas-sifying people as gorillas or chatbots 

using slurs [8]. 
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5. Representation Harm: Over- or under-representation 

of certain groups, e.g., racial bias in welfare fraud 

investigations or neglect of elderly populations in 

public-space monitoring [8]. 

6. Procedural Harm: Decision-making practices 

violating social norms, such as pe-nalizing job 

applicants for extensive experience or failing to provide 

transparency, justification, or appeals for algorithmic 

decisions [11]. 

These harms often overlap and are not exhaustive, 

emphasizing the need for careful consideration of fairness 

from the development stage of algorithmic systems. 

Integrating machine learning fairness techniques into a 

research paper as an indus-try application is essential for 

advancing the adoption of ethical AI practices. Fairness 

libraries provide a range of tools to assess and mitigate 

biases in machine learning mod-els, addressing the growing 

need for equity as industries increasingly rely on AI-driven 

decision-making systems. These tools are particularly 

beneficial in sectors like finance, banking, and healthcare, 

where fairness is critical. By enabling intuitive and 

interactive exploration of model behavior, fairness tools 

empower stakeholders to effectively evalu-ate and address 

fairness trade-offs. Showcasing the practical applications of 

these tools bridges the gap between academic innovation 

and industrial implementation, fostering the development of 

transparent and equitable AI systems. This paper presents 

use cases employing three widely trusted fairness libraries—

Fairlearn by Microsoft, AIF360 by IBM, and the What-If 

Tool by Google—to assess and mitigate bias in machine 

learning models before deployment. This work aims to 

encourage and guide industry profession-als in incorporating 

these libraries into their workflows, promoting fairness 

across diverse applications. 

In our study, we conducted a comparative evaluation of two 

strategies for mitigating bias in machine learning models. 

We examined the application of individual mitiga-tion 

algorithms in isolation and compared it to the sequential 

application of multiple algorithms across different stages of 

the ML lifecycle: pre-processing, in-processing, and post-

processing. The sequential approach is designed to harness 

the unique strengths of each stage-specific algorithm, 

providing a more comprehensive solution to addressing bias. 

To conduct this study, publicly available datasets [12] from 

Kaggle was selected. Kaggle datasets provide diverse and 

realistic scenarios for analyzing machine learning models, 

making them ideal for this type of research. The dataset was 

preprocessed and used to develop classification models, a 

common task in machine learning that involves predicting 

discrete labels based on input features. Classification 

problems are partic-ularly relevant for fairness studies 

because biased predictions can disproportionately impact 

specific groups. 

To evaluate and mitigate potential biases, three state-of-the-

art fairness libraries were employed: Fairlearn by Microsoft, 

AIF360 by IBM, and the What-If Tool by Google. These 

libraries provide comprehensive toolsets for fairness 

analysis, including metrics to assess fairness, visualizations 

to interpret model behavior, and algorithms to mitigate bias. 

By leveraging these libraries, this research systematically 

evaluates the fairness of classification models and explores 

techniques to reduce bias in their predictions. The same 

fairness analysis was done for unstructured datasets with 

computer vision and natural language processing models in 

our paper [44]. 

While previous studies have primarily addressed fairness 

interventions at isolated stages of the ML lifecycle, our 

research advances the field of AI by introducing a se-

quential approach that integrates fairness interventions 

across all three stages of the ML lifecycle. This approach 

provides a comprehensive framework for enhancing bias 

mitiga-tion, ensuring a more holistic treatment of biases, 

reducing the propagation of fairness issues during model 

development, and minimizing residual disparities that may 

remain when only single-stage interventions are employed 
[45, 46]. By applying this lifecycle-based framework to real-

world datasets, our study offers robust empirical evidence of 

its effectiveness. This work bridges the gap between 

theoretical fairness concepts and their practical application, 

promoting wider adoption of lifecycle-based fairness 

methodologies [47]. The objectives of this research are: 

1. The central objective is to demonstrate how a sequential 

application of fairness mitigation algorithms across the 

ML lifecycle stages, pre-processing, in-processing, and 

post-processing, leads to superior mitigation of biases 

compared to applying these methods in isolation. 

2. To assess the extent of bias present in machine learning 

models trained on the selected structured dataset. 

3. To compare the performance and effectiveness of the 

three fairness libraries in identifying and mitigating 

bias. 

4. To provide actionable insights into the application of 

fairness tools in real-world machine learning 

workflows. 

The remainder of this paper is organized as follows: Section 

2 provides a review of related work on machine learning 

fairness. Section 3 describes the methodology, including the 

dataset, preprocessing steps, and model development 

process. Section 4 discusses the implementation of fairness 

analyses using the selected libraries and their capabilities. 

Section 5 presents a comparative analysis and results of the 

libraries. Finally, Section 6 concludes with a summary of 

findings. 

 

2. Review of Related Work 

Bias in machine learning (ML) models has been a growing 

area of concern, particularly as these models increasingly 

impact critical societal domains such as healthcare, hiring, 

and criminal justice. Numerous studies have explored the 

origins, manifestations, and mitigation strategies of bias, 

providing a comprehensive foundation for understanding 

and addressing this pervasive issue. 

One key area of research focuses on identifying and 

characterizing biases in machine learning models. Ref. [13] 

provide a broad taxonomy of biases, categorizing them into 

historical, representation, and measurement biases. 

Historical bias originates from inequities in the data itself, 

even before ML techniques are applied. Representation bias 

emerges when certain groups are under- or over-represented 

in the training data, leading to skewed model predictions [14]. 

Measurement bias arises when the features or labels used for 

training do not accurately reflect the target variable due to 

flawed measurement processes. 

Another stream of work has delved into bias detection 

methods. Techniques such as disparate impact analysis [15] 

and fairness metrics like demographic parity, equal op-

portunity, and disparate mistreatment [16] have become 

standard tools. For structured datasets, researchers often 
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focus on quantifying group fairness and individual fairness. 

Group fairness ensures equitable treatment across 

predefined demographic groups, while individual fairness 

emphasizes treating similar individuals similarly [17]. Ref. [18] 

dis-cusses how these fairness definitions often conflict, 

necessitating trade-offs tailored to specific applications. 

The literature also emphasizes the technical challenges of 

mitigating bias. One pop-ular approach involves pre-

processing techniques to address biases within the dataset 

itself. For example, Ref. [19] proposes re-weighting data 

samples or modifying labels to ensure fairness before model 

training. In-processing methods, such as adversarial debias-

ing [20], introduce fairness constraints directly into the 

training process. Post-processing techniques adjust the 

model outputs to achieve fairness metrics, such as the re-

ranking methods proposed by [16]. However, Ref. [21] 

highlights the inherent trade-offs between fairness metrics, 

illustrating that achieving fairness often requires sacrificing 

accuracy. 

Bias analysis in structured datasets, specifically, has 

garnered attention due to the widespread use of tabular data 

in decision-making systems. Structured datasets often carry 

latent biases stemming from historical inequities in human 

decision-making or sys-temic discrimination. The COMPAS 

dataset, used in criminal justice, exemplifies these 

challenges, with studies showing racial disparities in 

predictive outcomes [22]. Research on structured datasets also 

highlights the role of feature selection and data preprocess-

ing in amplifying or mitigating biases. Ref. [23] examines 

how feature correlation with sensitive attributes impacts 

fairness, proposing strategies for disentangling these rela-

tionships. 

Recent work has explored interpretability and its role in bias 

analysis. Ref. [24] in-troduced LIME (Local Interpretable 

Model-agnostic Explanations) to help stakeholders 

understand model predictions, aiding the detection of biased 

decision-making patterns. In Ref. [25] further developed 

SHAP (SHapley Additive exPlanations), which provides 

consistent and locally accurate feature importance values. 

These tools have been instru-mental in identifying bias 

within structured datasets, as they enable granular analyses 

of how individual features contribute to unfair predictions. 

Additionally, researchers are increasingly incorporating 

intersectionality into bias studies. Ref. [26] emphasized the 

importance of evaluating models across multiple 

demographic axes, demonstrating how performance 

disparities can compound for inter-sectional groups, such as 

Black women in facial recognition systems. For structured 

datasets, studies by [27] propose fairness-enhancing 

interventions that consider multiple subgroups 

simultaneously, avoiding the pitfalls of single-axis fairness 

analysis. 

The literature on bias in machine learning models spans a 

wide range of topics, from foundational definitions and 

detection methods to mitigation strategies and inter-

pretability tools. While significant progress has been made, 

challenges remain in apply-ing these techniques to 

structured datasets, particularly in balancing fairness with 

other competing objectives such as accuracy and 

interpretability. This review underscores the importance of 

continued research into holistic and context-sensitive 

approaches for analyzing and mitigating bias in machine 

learning models. 

 

3. Dataset and Model Details 

We used two datasets in this work to generalize our 

conclusion as much as possible. The first data is a loan 

dataset [12]. The dataset is designed to automate the real-time 

loan eligibility process based on customer details provided 

during the online application form submission. These details 

include gender, marital status, education, number of 

dependents, income, loan amount, credit history, and other 

relevant factors. The primary objective is to determine 

eligibility for granting a home loan (Yes/No) by predicting 

loan eligibility based on the provided information. Gender is 

considered a sensitive feature in the analysis. The dataset 

comprises 614 samples with a total of 11 features. 

The second dataset is a job application one [12]. The 

“Employability Classification of Over 70,000 Job 

Applicants” dataset provides detailed information about job 

applicants and their employability scores, aiming to assist 

organizations in evaluating candidates for various 

employment opportunities. Leveraging machine learning 

techniques, it offers insights into factors influencing 

employability, enhancing the efficiency of the hiring pro-

cess. The dataset, compiled from job portals, career fairs, 

and online applications, spans diverse industries, roles, and 

qualifications, ensuring broad applicability. It includes 

features such as age, education level, gender, professional 

experience, coding expertise, previous salary, and computer 

skills, with “Employed” serving as the target variable in-

dicating whether the applicant was hired. This structured 

dataset represents applicants through rows, with attributes 

organized into columns, making it a valuable resource for 

analyzing employability trends. 

To process the datasets, categorical variables were encoded 

using techniques such as one-hot encoding, and continuous 

variables were normalized to ensure compatibility with the 

machine learning models. The dataset was split into training 

and testing subsets using an 80-20 split to evaluate model 

performance. 

For the model, the pipeline employed several machine 

learning algorithms, including Logistic Regression, Decision 

Trees, CatBoost, and Gradient Boosting. CatBoost [48] 

emerged as the most effective algorithm for the 

classification task. Hyperparameter tuning was performed 

using grid search to optimize the model’s performance. 

The study evaluated the model using standard classification 

metrics such as accuracy, precision, recall, and F1-score. In 

addition, fairness metrics such as demographic parity and 

disparate impact were calculated to analyze potential biases. 

Results highlighted disparities in prediction accuracy across 

demographic groups, with notable differences between 

different subgroups in the sensitive features. These findings 

underscored the im-portance of incorporating fairness 

evaluations into traditional performance assessments for 

machine learning models. 

 

4. Implementation of Fairness Analyses 

In recent years, the increasing reliance on machine learning 

(ML) in various sectors has led to growing concerns over 

fairness and bias in classification models. As these models 

can significantly influence decision-making processes in 

critical areas such as healthcare, finance, and criminal 

justice [28], ensuring their fairness has become imperative. 

Bias in ML models can manifest due to various factors, 

including skewed training data, model selection, and 
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underlying societal biases, ultimately leading to 

discriminatory outcomes against marginalized groups [29]. 

To address these challenges, several libraries and tools have 

been developed to assist practitioners in analyzing and 

mitigating bias in their models. Among them, Fairlearn, 

AIF360, and What-If Tool stand out as comprehensive 

resources that offer unique func-tionalities for fairness 

evaluation and enhancement. 

▪ Fairlearn [30]: Developed by Microsoft, this toolkit 

helps data scientists assess and improve the fairness of 

their AI models by providing a suite of metrics to 

evaluate fairness and algorithms for mitigating 

unfairness. Fairlearn emphasizes the importance of both 

social and technical dimensions of fairness in AI 

systems. It facilitates the understanding of how different 

aspects of a model contribute to disparities among 

groups. 

In this analysis, we will use the fairness metric 

Demographic Parity Difference (DPD) that measures the 

disparity between the selection rates of two or more groups. 

It’s calculated by finding the difference between the largest 

and smallest group-level selection rate. A lower value 

indicates less disparity. 

Different mitigation algorithms will be used to mitigate the 

bias in the model. There are algorithms work on different 

ML life cycle stages such as pre-processing, in-processing, 

and post-processing levels. The best algorithms that will 

work good for our use cases are Exponentiation Gradient 

and Threshold Optimizer. 

The Exponentiated Gradient (EG) is designed to reduce 

unfairness in machine learning models by framing the 

problem as a constrained optimization task. The algorithm 

seeks to minimize loss (maximize predictive accuracy) 

while satisfying constraints related to fairness. 

Exponentiated Gradient works by iteratively finding a 

weighted combination of models (or classifiers) that 

achieves the best trade-off between accuracy and fairness 

constraints. This combination forms a probabilis-tic 

ensemble, where models are assigned weights using an 

exponentiated updates scheme. The ensemble is then used 

for predictions. The fairness constraints are typically defined 

in terms of statistical fairness metrics, such as demographic 

par-ity, equalized odds, or disparate impact. These 

constraints are enforced within a specified tolerance level. 

The Exponentiated Gradient method addresses the following 

optimization problem [37]: 

 

  
 

  
 

Where Θ is the set of all possible classifiers, L(hˆ) is the loss 

function measuring predictive performance (e.g., log-loss or 

mean squared error), gi(hˆ) are the fair-ness constraint 

functions, quantifying the extent to which fairness 

conditions (e.g., equal opportunity) are violated for the i-th 

constraint, ϵ is the allowed constraint violation margin, and 

hˆ is a hypothesis (or classifier). 

The Threshold Optimizer in the Fairlearn library is a 

fairness mitigation algorithm designed to adjust decision 

thresholds of a pre-trained model to satisfy fairness con-

straints. Instead of retraining the model, it modifies how the 

model’s predictions are converted into decisions, making it 

efficient and easy to integrate into existing workflows. 

Threshold Optimizer takes the predicted scores from a 

model and applies group-specific thresholds to ensure that 

fairness constraints are met. This approach is particularly 

useful for binary classification tasks, where decisions are 

based on whether a prediction exceeds a threshold. The 

algorithm assigns different thresh-olds for different 

demographic groups, balancing fairness and predictive 

perfor-mance. 

Fairness constraints, such as demographic parity or 

equalized odds, are specified, and the algorithm ensures that 

the decision-making process respects these con-straints. The 

optimization minimizes a loss function (e.g., error rate) 

while satis-fying fairness conditions. 

Threshold Optimizer solves the following constrained 

optimization problem for a binary classification setting [38, 

39]: 

 

  
 

  
 

Where T = {Tg}g∈G is the set of thresholds, one for each 

demographic group g ∈ G, L(Y, YˆT ) is the loss function, 

comparing true labels Y and predicted labels YˆT derived 

using thresholds T, gi(T ) are fairness constraint functions 

that quantify fairness violations (e.g., difference in true 

positive rates between groups), and ϵ is the tolerance for 

constraint violations. By adjusting thresholds instead of 

retrain-ing, Threshold Optimizer provides a straightforward 

and computationally efficient method to ensure fairness in 

decision-making. 

▪ AIF360 [31]: This comprehensive library offers a wide 

range of metrics for as-sessing fairness and techniques 

for mitigating bias across the entire AI application 

lifecycle. Developed by IBM, AIF360 includes methods 

that can be integrated into different stages of the 

machine learning pipeline to facilitate fairness-aware 

modeling. It includes metrics for evaluating fairness 

across different societal de-mographics and offers re-

parameterization strategies to improve model 

robustness. 

Two successful mitigation algorithms will provide very 

good results in reducing the bias in the ML model with 

maintaining the metric chosen to measure the perfor-

mance which is Average Odds Difference (AOD). 

These algorithms are Reweighing and Equalized Odds. 

Reweighing is a preprocessing technique that assigns 

weights to the data instances to reduce biases associated 

with sensitive attributes, such as race, gender, or age. 

The reweighing process ensures that different groups 

are treated fairly in terms of representation when 

training a machine learning model [40]. 

The main idea of Reweighing is to balance the dataset 

so that the proportion of favorable and unfavorable 

outcomes is equal across different demographic groups 

defined by the sensitive attribute. The algorithm does 

this by computing instance weights based on the joint 

distribution of sensitive attributes and class labels. 

These weights are then applied to the training dataset, 

allowing the model to learn a more unbiased 

representation. 
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Reweighing can mitigate fairness issues such as 

disparate impact or statistical parity, depending on the 

fairness metric being addressed. This method does not 

modify the feature values or the labels but adjusts their 

importance in the training process. 

Equalized Odds is a fairness mitigation method that 

ensures a model’s predictions satisfy the fairness 

criterion known as equalized odds. This criterion 

requires that the prediction outcomes be independent of 

sensitive attributes, conditional on the true outcome. In 

other words, the model should have the same true 

positive rate (TPR) and false positive rate (FPR) across 

all groups defined by the sensitive attribute. 

The Equalized Odds approach modifies the predictions 

of a classifier to ensure that the TPR and FPR are 

approximately equal across groups [41, 42, 43]. It achieves 

this by adjusting decision thresholds for different 

groups or directly post-processing the predictions. This 

technique is a post-processing method, meaning it does 

not alter the original model but modifies its outputs to 

improve fairness. The algorithm is useful in 

applications where fairness is critical and ensures that 

predictions are fair across groups while maintaining as 

much accuracy as possible. 

▪ What-If-Tool [32]: Created by Google, this interactive 

visualization tool allows users to explore and analyze 

machine learning models without requiring any cod-ing. 

It supports performance testing in hypothetical 

scenarios, facilitating the understanding and explanation 

of model behavior. It enables users to observe model 

performance across different demographics and explore 

various “what-if” scenarios. It supports users in 

understanding how changes in input features affect 

model predictions, thus empowering them to conduct 

deeper bias analysis. 

Together, these tools are essential for researchers aiming to 

understand and mitigate bias in machine learning 

classification models, equipping them with the 

methodologies to ensure equitable AI systems and informed 

decision-making processes. 

 

5. Results and Discussions 

In this section, we present and analyze the results obtained 

from each fairness library. The primary objective of our 

analysis is to conduct a comparative study on the effective-

ness of applying individual mitigation algorithms versus 

applying multiple algorithms sequentially across the three 

stages of the ML lifecycle. The results demonstrate that, in 

some cases, sequential applications yield better outcomes 

compared to individual ap-plications, while in others, they 

perform worse. These outcomes are evaluated based on their 

ability to improve fairness metrics while maintaining or 

enhancing performance metrics. The details for each library 

are provided below. The codes and details can be found in 
[33]. The sensitive feature in the loan and job application 

datasets that we measured the bias in is gender, and we used 

the CatBoost algorithm [48] in the classifi-cation model. The 

model of the loan dataset predicts the eligibility of the 

applicant for a loan, and the model of the job applicant 

dataset predicts the eligibility of employment. For both 

models, we use the accuracy as the model performance 

metric. We investigate the model if it is biased against any 

group (male/female) in gender. 

For Fairlearn, we use demographic parity difference as a 

fairness metric to evaluate the bias in the machine learning 

model. To address and mitigate the detected biases, we 

applied mitigation algorithms at three stages of the machine 

learning pipeline: prepro-cessing, in-processing, and 

postprocessing. Preprocessing techniques involved 

modifying the training data to reduce bias before feeding it 

into the model. For example, sensitive features in a dataset 

may be correlated with non-sensitive features. The 

Correlation Re-mover addresses this by eliminating these 

correlations, while preserving as much of the original data 

as possible, as evaluated by the least-squares error. In-

processing methods integrated fairness constraints into the 

model training process, with approaches such as 

exponentiated gradient ensuring that the model learned 

fairer decision boundaries. Postprocessing focused on 

adjusting the predictions after model training, ensuring that 

the final outputs adhered to fairness criteria without 

retraining the model such as thresh-old optimizer which is 

built to satisfy the specified fairness criteria exactly and with 

no remaining disparity [34, 35, 36]. 

Beyond these individual techniques, we also explored the 

use of combined mitigation approaches, where two 

algorithms were applied in series to enhance fairness 

outcomes. For instance, preprocessing adjustments were 

complemented by postprocessing tweaks, leading to 

improved alignment with both accuracy and fairness 

objectives. This com-bined approach aimed to leverage the 

strengths of each mitigation stage to produce more equitable 

and reliable model predictions. 

The evaluation process identify the best algorithm/s as the 

one that achieve a dual objective: minimizing bias metrics 

like demographic parity difference while maintaining 

performance metrics such as accuracy, precision, and recall. 

Our findings highlight the importance of an integrated 

approach to fairness, where multiple strategies are utilized in 

conjunction to address complex biases inherent in structured 

datasets. 

Fig 1 presents the results of fairlearn applied to the two 

datasets. For the loan dataset, the baseline model, prior to 

implementing any mitigation algorithm, achieved a 

performance metric (Accuracy) of 0.7818 and a fairness 

metric (Demographic Parity Difference) of 0.0672. For the 

job application dataset, the baseline model, prior to imple-

menting any mitigation algorithm, achieved a performance 

metric (Accuracy) of 0.8378 and a fairness metric 

(Demographic Parity Difference) of 0.1046. Ideally, the 

accuracy would be 1.00, and the demographic parity 

difference would be 0.00. To address bias, we applied 

mitigation algorithms both individually and sequentially, 

using two different algorithms at distinct stages of the 

machine learning lifecycle. For the loan dataset, the best 

result is obtained by the exponential gradient algorithm, 

which maintained an accuracy of 0.7638 and reduced the 

demographic parity difference to 3.17%. For the job 

applicants dataset, the best result is obtained by the 

sequential algorithms Correlation Remover + Threshold 

Optimizer, which maintained an accuracy of 0.8369 and 

reduced the demographic parity difference to 0.38%. 

Notably, overall performance of some individual application 

of the mitigation algo-rithms is better than the sequential 

algorithms as we see from Fig 1 plots. Both exponentiated 

gradient and threshold optimizer reduced the 
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bias in the models and maintained their performance. On the 

other hand, there is no sequential algorithms hold a good 

performance across the two datasets. 

For AIF360, we employ both individual mitigation 

algorithms as well as two distinct mitigation algorithms 

within each stage of the machine learning pipeline to 

comprehen-sively address bias. We use the fairness metrics 

Statistical Parity Difference, Average Odds Difference, 

Equal Opportunity Difference, Theil Index, and Generalized 

Entropy Index. We employ the mitigation algorithms 

Reweighing, Disparate Impact Remover, Adversarial 

Debiasing, and Calibrated EqOdds. 

In the preprocessing stage, Reweighing assigns weights to 

instances based on their representation in different 

demographic groups. This approach ensured a balanced dis-

tribution of data, directly addressing biases embedded in the 

training dataset. 

In the post-processing stage, Equalized Odds imposes 

constraints during model train-ing to ensure that predictive 

outcomes were not disproportionately distributed across 

sensitive attributes such as race or gender. By enforcing 

parity in true positive and false positive rates, Equalized 

Odds can enhance fairness without significantly 

compromising model performance. 

By looking at the two plots in Fig 2, one can recognize that 

the mitigation algo-rithms are not effective in reducing bias 

in the models as much as the ones of the Fairlearn library as 

shown in Fig 1. Fig 2 shows a pattern for the impact of the 

mitigation algorithm applications to the model performance 

both in individual and sequential order. The best algorithms 

in maintaining the model performance are Reweighing, 

Disparate Impact Remover, and Calibrated EqOdds in 

individual order, as well as Reweighing + Calibrated 

EqOdds in sequential order where the accuracy of the 

original model is 78.18% for the loan dataset and 83.78% 

for the job applicant dataset and after applying these 

mitigation algorithms the accuracy did not change much. 

Regarding the bias in the models, both individual and 

sequential algorithms do not show much impact in re-ducing 

bias. On the contrary, some individual and sequential 

algorithms have increased the bias in the models. 

Our findings underscore the importance of selecting 

appropriate mitigation strategies tailored to specific stages 

of the machine learning pipeline. By leveraging the effective 

mitigation algorithms, we demonstrated that it is possible to 

achieve a balanced trade-off between fairness and accuracy, 

highlighting the potential of integrated approaches to bias 

mitigation in structured datasets. 

 

 
 

 
 

Fig 1: The results of applying Fairlearn to loan and job application datasets with classification model after applying the mitigation algorithms 

one at a time and in sequential order 

 

In the What-If Tool, there is no mitigation algorithms to 

reduce the model bias. Therefore, we do not discuss this 

library here in the paper for comparing between mit-igation 

algorithms. Instead we demonstrate that the bias may change 

by adjusting the threshold for the labeled class that impacts 

both the model’s performance and its bias metrics. The 

optimal thresholds identified for this model were 0.2 and 

0.4. At these thresholds, the model performance metric 

(Accuracy) increased from 0.33 to an average of 0.62, 

representing a 29% improvement, while the bias metric 

(Demographic Parity Difference) decreased from 0.19 to 

0.01, reflecting an 18% reduction. These results are 

summarized in Table 3. 
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Fig 2: The results of applying AIF360 to loan and job application datasets with classification model after applying the mitigation algorithms 

one at a time and in sequential order 

 

6. Conclusion 

This work examined the fairness of machine learning 

models with classification tasks using structured datasets, 

focusing on how biased predictions can reinforce systemic 

inequalities. Kaggle datasets were analyzed to provide the 

model fairness, utilizing two fairness libraries Fairlearn 

(Microsoft) and AIF360 (IBM) to evaluate and mitigate 

bias. We discussed a comparative study of applying the 

mitigation algorithms of these libraries individually one at a 

time in one of the ML stages including pre-processing, in-

processing, and post-processing versus applying the 

mitigation algorithms in a sequential order at more than one 

stages at the same time. 

For the Fairlearn library, we observed that applying the 

mitigation algorithms both: 

 

Table 1: The results by applying What-If-Tool library to the classification model 
 

Thresholds 
Demographic Parity 

Male (DPM) 

Demographic Parity 

Female (DPF) 

Performance Change 

Using Average Accuracy Score 

Fairness Improvement Using 

Demographic Parity Diff = DPM - DPF 

Baseline 

0 
0.303 0.112 0.33 0.19 

0.2 0.566 0.551 
0.63 

30% better 

0.01 

18% better 

0.4 0.628 0.611 
0.61 

28% better 

0.01 

18% better 

0.6 0.655 0.627 
0.55 

22% better 

0.02 

17% better 

0.8 0.716 0.686 
0.50 

17% better 

0.03 

16% better 

0.9 0.702 0.689 
0.45 

12% better 

0.01 

18% better 

1.0 0 0 
0 

33% worse 

0 

19% better 

 

individually and in a sequential order have a good power in 

reducing the bias in the model. Some individual applications 

such as exponentiated gradient and threshold op-timizer 

showed better performance in reducing bias and maintaining 

the model per-formance over the sequential application of 

the algorithms. However, no sequential algorithm 

consistently maintained high performance across both 

datasets. 

In contrast, the AIF360 library’s mitigation algorithms 

showed less effectiveness in reducing bias while 

maintaining model performance. Sequential algorithms in 

AIF360 had minimal impact on bias reduction and, in some 

cases, increased bias in the models. Overall, the study 

demonstrated that Fairlearn algorithms outperform those in  

AIF360 in balancing fairness and model performance. 
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