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Abstract

Machine learning (ML) algorithms have become integral to
decision-making in various domains, including healthcare,
finance, education, and law enforcement. However,
concerns about fairness and bias in these systems pose
significant ethical and social challenges.

To evaluate and mitigate biases, three prominent fairness
libraries-Fairlearn by Microsoft, AIF360 by IBM, and the
What-If-Tool by Google were employed. These libraries
provide robust frameworks for analyzing fairness, offering
tools to evaluate metrics, visualize results, and implement
bias mitigation strategies.

The study aims to evaluate and mitigate biases in a
structured dataset using classification models. The main aim

Keywords: Machine Learning Fairness, Bias Analysis

of the paper is to present a comparative study for the
performance of the mitigation algorithms in two fair-ness
libraries by applying them individually one at a time in one
of the three stages of the machine learning lifecycle (pre-
processing, in-processing, or post-processing), and applying
the algorithms in a sequential order in different stages at the
time. The findings demonstrate that some sequential order
applications enhance the mitigation algorithms performance
by reducing bias and maintaining the model performance.

A publicly available dataset from Kaggle was selected for
analysis, offering a realistic scenario for evaluating fairness
in machine learning workflows.

1. Introduction

Machine learning algorithms are widely used in various domains, including entertain-ment, shopping, healthcare, finance,

education, law enforcement, and high-stakes areas like loans [l and hiring decisions > 3. They provide advantages such as

tireless per-formance and the ability to process numerous factors [ 3. However, algorithms can also exhibit biases, leading to

unfair outcomes [® 7). Bias in machine learning can lead to discriminatory outcomes, especially when decisions directly affect

individuals or com-munities. Addressing these issues is essential to ensure that machine learning systems operate ethically and

equitably. Fairness in decision-making requires the absence of prej-udice or favoritism based on inherent or acquired

characteristics, and biased algorithms fail this standard by skewing decisions toward certain groups.

The concept of “fairness” in algorithmic systems is heavily influenced by the so-ciotechnical context. Various types of

fairness-related harms have been identified:

1. Allocation Harm: Unfair distribution of opportunities, resources, or information, such as an algorithm selecting men more
often than women for job opportunities [,

2. Quality-of-Service Harm: Disproportionate failures affecting certain groups, e.g., facial recognition misclassifying Black
women more often than White men ), or speech recognition underperforming for users with speech disabilities [,

3. Stereotyping Harm: Reinforcement of societal stereotypes, such as image searches for "CEO” predominantly showing
photos of White men [,
4. Denigration Harm: Offensive or derogatory outputs from systems, like misclas-sifying people as gorillas or chatbots

using slurs [,
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5. Representation Harm: Over- or under-representation
of certain groups, e.g., racial bias in welfare fraud
investigations or neglect of elderly populations in
public-space monitoring [*],

6. Procedural Harm: Decision-making practices
violating social norms, such as pe-nalizing job
applicants for extensive experience or failing to provide
transparency, justification, or appeals for algorithmic
decisions [,

These harms often overlap and are not exhaustive,
emphasizing the need for careful consideration of fairness
from the development stage of algorithmic systems.
Integrating machine learning fairness techniques into a
research paper as an indus-try application is essential for
advancing the adoption of ethical Al practices. Fairness
libraries provide a range of tools to assess and mitigate
biases in machine learning mod-els, addressing the growing
need for equity as industries increasingly rely on Al-driven
decision-making systems. These tools are particularly
beneficial in sectors like finance, banking, and healthcare,
where fairness is critical. By enabling intuitive and
interactive exploration of model behavior, fairness tools
empower stakeholders to effectively evalu-ate and address
fairness trade-offs. Showcasing the practical applications of
these tools bridges the gap between academic innovation
and industrial implementation, fostering the development of
transparent and equitable Al systems. This paper presents
use cases employing three widely trusted fairness libraries—
Fairlearn by Microsoft, AIF360 by IBM, and the What-If
Tool by Google—to assess and mitigate bias in machine
learning models before deployment. This work aims to
encourage and guide industry profession-als in incorporating
these libraries into their workflows, promoting fairness
across diverse applications.
In our study, we conducted a comparative evaluation of two
strategies for mitigating bias in machine learning models.
We examined the application of individual mitiga-tion
algorithms in isolation and compared it to the sequential
application of multiple algorithms across different stages of
the ML lifecycle: pre-processing, in-processing, and post-
processing. The sequential approach is designed to harness
the unique strengths of each stage-specific algorithm,
providing a more comprehensive solution to addressing bias.
To conduct this study, publicly available datasets ['?! from
Kaggle was selected. Kaggle datasets provide diverse and
realistic scenarios for analyzing machine learning models,
making them ideal for this type of research. The dataset was
preprocessed and used to develop classification models, a
common task in machine learning that involves predicting
discrete labels based on input features. Classification
problems are partic-ularly relevant for fairness studies
because biased predictions can disproportionately impact
specific groups.

To evaluate and mitigate potential biases, three state-of-the-

art fairness libraries were employed: Fairlearn by Microsoft,

AIF360 by IBM, and the What-If Tool by Google. These

libraries provide comprehensive toolsets for fairness

analysis, including metrics to assess fairness, visualizations
to interpret model behavior, and algorithms to mitigate bias.

By leveraging these libraries, this research systematically

evaluates the fairness of classification models and explores

techniques to reduce bias in their predictions. The same
fairness analysis was done for unstructured datasets with
computer vision and natural language processing models in
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our paper 441,
While previous studies have primarily addressed fairness
interventions at isolated stages of the ML lifecycle, our
research advances the field of Al by introducing a se-
quential approach that integrates fairness interventions
across all three stages of the ML lifecycle. This approach
provides a comprehensive framework for enhancing bias
mitiga-tion, ensuring a more holistic treatment of biases,
reducing the propagation of fairness issues during model
development, and minimizing residual disparities that may
remain when only single-stage interventions are employed
[45, 461 By applying this lifecycle-based framework to real-
world datasets, our study offers robust empirical evidence of
its effectiveness. This work bridges the gap between
theoretical fairness concepts and their practical application,
promoting wider adoption of lifecycle-based fairness
methodologies [7]. The objectives of this research are:

1. The central objective is to demonstrate how a sequential
application of fairness mitigation algorithms across the
ML lifecycle stages, pre-processing, in-processing, and
post-processing, leads to superior mitigation of biases
compared to applying these methods in isolation.

2. To assess the extent of bias present in machine learning
models trained on the selected structured dataset.

3. To compare the performance and effectiveness of the
three fairness libraries in identifying and mitigating
bias.

4. To provide actionable insights into the application of
fairness tools in real-world machine learning
workflows.

The remainder of this paper is organized as follows: Section

2 provides a review of related work on machine learning

fairness. Section 3 describes the methodology, including the

dataset, preprocessing steps, and model development
process. Section 4 discusses the implementation of fairness
analyses using the selected libraries and their capabilities.

Section 5 presents a comparative analysis and results of the

libraries. Finally, Section 6 concludes with a summary of

findings.

2. Review of Related Work

Bias in machine learning (ML) models has been a growing
area of concern, particularly as these models increasingly
impact critical societal domains such as healthcare, hiring,
and criminal justice. Numerous studies have explored the
origins, manifestations, and mitigation strategies of bias,
providing a comprehensive foundation for understanding
and addressing this pervasive issue.

One key area of research focuses on identifying and
characterizing biases in machine learning models. Ref. 13
provide a broad taxonomy of biases, categorizing them into
historical, representation, and measurement biases.
Historical bias originates from inequities in the data itself,
even before ML techniques are applied. Representation bias
emerges when certain groups are under- or over-represented
in the training data, leading to skewed model predictions [,
Measurement bias arises when the features or labels used for
training do not accurately reflect the target variable due to
flawed measurement processes.

Another stream of work has delved into bias detection
methods. Techniques such as disparate impact analysis [
and fairness metrics like demographic parity, equal op-
portunity, and disparate mistreatment '] have become
standard tools. For structured datasets, researchers often
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focus on quantifying group fairness and individual fairness.
Group fairness ensures equitable treatment across
predefined demographic groups, while individual fairness
emphasizes treating similar individuals similarly ['7]. Ref. [18]
dis-cusses how these fairness definitions often conflict,
necessitating trade-offs tailored to specific applications.

The literature also emphasizes the technical challenges of
mitigating bias. One pop-ular approach involves pre-
processing techniques to address biases within the dataset
itself. For example, Ref. ') proposes re-weighting data
samples or modifying labels to ensure fairness before model
training. In-processing methods, such as adversarial debias-
ing 9 introduce fairness constraints directly into the
training process. Post-processing techniques adjust the
model outputs to achieve fairness metrics, such as the re-
ranking methods proposed by [l However, Ref. [!
highlights the inherent trade-offs between fairness metrics,
illustrating that achieving fairness often requires sacrificing
accuracy.

Bias analysis in structured datasets, specifically, has
garnered attention due to the widespread use of tabular data
in decision-making systems. Structured datasets often carry
latent biases stemming from historical inequities in human
decision-making or sys-temic discrimination. The COMPAS
dataset, used in criminal justice, exemplifies these
challenges, with studies showing racial disparities in
predictive outcomes [??!, Research on structured datasets also
highlights the role of feature selection and data preprocess-
ing in amplifying or mitigating biases. Ref. [2*! examines
how feature correlation with sensitive attributes impacts
fairness, proposing strategies for disentangling these rela-
tionships.

Recent work has explored interpretability and its role in bias
analysis. Ref. ¥ in-troduced LIME (Local Interpretable
Model-agnostic  Explanations) to help stakeholders
understand model predictions, aiding the detection of biased
decision-making patterns. In Ref. 2 further developed
SHAP (SHapley Additive exPlanations), which provides
consistent and locally accurate feature importance values.
These tools have been instru-mental in identifying bias
within structured datasets, as they enable granular analyses
of how individual features contribute to unfair predictions.
Additionally, researchers are increasingly incorporating
intersectionality into bias studies. Ref. 2! emphasized the
importance of evaluating models across multiple
demographic axes, demonstrating how performance
disparities can compound for inter-sectional groups, such as
Black women in facial recognition systems. For structured
datasets, studies by [l propose fairness-enhancing
interventions  that  consider = multiple  subgroups
simultaneously, avoiding the pitfalls of single-axis fairness
analysis.

The literature on bias in machine learning models spans a
wide range of topics, from foundational definitions and
detection methods to mitigation strategies and inter-
pretability tools. While significant progress has been made,
challenges remain in apply-ing these techniques to
structured datasets, particularly in balancing fairness with
other competing objectives such as accuracy and
interpretability. This review underscores the importance of
continued research into holistic and context-sensitive
approaches for analyzing and mitigating bias in machine
learning models.
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3. Dataset and Model Details

We used two datasets in this work to generalize our
conclusion as much as possible. The first data is a loan
dataset [']. The dataset is designed to automate the real-time
loan eligibility process based on customer details provided
during the online application form submission. These details
include gender, marital status, education, number of
dependents, income, loan amount, credit history, and other
relevant factors. The primary objective is to determine
eligibility for granting a home loan (Yes/No) by predicting
loan eligibility based on the provided information. Gender is
considered a sensitive feature in the analysis. The dataset
comprises 614 samples with a total of 11 features.

The second dataset is a job application one [?. The
“Employability Classification of Over 70,000 Job
Applicants” dataset provides detailed information about job
applicants and their employability scores, aiming to assist
organizations in evaluating candidates for various
employment opportunities. Leveraging machine learning
techniques, it offers insights into factors influencing
employability, enhancing the efficiency of the hiring pro-
cess. The dataset, compiled from job portals, career fairs,
and online applications, spans diverse industries, roles, and
qualifications, ensuring broad applicability. It includes
features such as age, education level, gender, professional
experience, coding expertise, previous salary, and computer
skills, with “Employed” serving as the target variable in-
dicating whether the applicant was hired. This structured
dataset represents applicants through rows, with attributes
organized into columns, making it a valuable resource for
analyzing employability trends.

To process the datasets, categorical variables were encoded
using techniques such as one-hot encoding, and continuous
variables were normalized to ensure compatibility with the
machine learning models. The dataset was split into training
and testing subsets using an 80-20 split to evaluate model
performance.

For the model, the pipeline employed several machine
learning algorithms, including Logistic Regression, Decision
Trees, CatBoost, and Gradient Boosting. CatBoost [
emerged as the most effective algorithm for the
classification task. Hyperparameter tuning was performed
using grid search to optimize the model’s performance.

The study evaluated the model using standard classification
metrics such as accuracy, precision, recall, and F1-score. In
addition, fairness metrics such as demographic parity and
disparate impact were calculated to analyze potential biases.
Results highlighted disparities in prediction accuracy across
demographic groups, with notable differences between
different subgroups in the sensitive features. These findings
underscored the im-portance of incorporating fairness
evaluations into traditional performance assessments for
machine learning models.

4. Implementation of Fairness Analyses

In recent years, the increasing reliance on machine learning
(ML) in various sectors has led to growing concerns over
fairness and bias in classification models. As these models
can significantly influence decision-making processes in
critical areas such as healthcare, finance, and criminal
justice 81 ensuring their fairness has become imperative.
Bias in ML models can manifest due to various factors,
including skewed training data, model selection, and

447


http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies

underlying  societal biases, ultimately leading to
discriminatory outcomes against marginalized groups %1,
To address these challenges, several libraries and tools have
been developed to assist practitioners in analyzing and
mitigating bias in their models. Among them, Fairlearn,
AIF360, and What-If Tool stand out as comprehensive
resources that offer unique func-tionalities for fairness
evaluation and enhancement.
=  Fairlearn B%: Developed by Microsoft, this toolkit
helps data scientists assess and improve the fairness of
their Al models by providing a suite of metrics to
evaluate fairness and algorithms for mitigating
unfairness. Fairlearn emphasizes the importance of both
social and technical dimensions of fairness in Al
systems. It facilitates the understanding of how different
aspects of a model contribute to disparities among
groups.
In this analysis, we will use the fairness metric
Demographic Parity Difference (DPD) that measures the
disparity between the selection rates of two or more groups.
It’s calculated by finding the difference between the largest
and smallest group-level selection rate. A lower value
indicates less disparity.
Different mitigation algorithms will be used to mitigate the
bias in the model. There are algorithms work on different
ML life cycle stages such as pre-processing, in-processing,
and post-processing levels. The best algorithms that will
work good for our use cases are Exponentiation Gradient
and Threshold Optimizer.
The Exponentiated Gradient (EG) is designed to reduce
unfairness in machine learning models by framing the
problem as a constrained optimization task. The algorithm
seeks to minimize loss (maximize predictive accuracy)
while  satisfying constraints related to  fairness.
Exponentiated Gradient works by iteratively finding a
weighted combination of models (or classifiers) that
achieves the best trade-off between accuracy and fairness
constraints. This combination forms a probabilis-tic
ensemble, where models are assigned weights using an
exponentiated updates scheme. The ensemble is then used
for predictions. The fairness constraints are typically defined
in terms of statistical fairness metrics, such as demographic
par-ity, equalized odds, or disparate impact. These
constraints are enforced within a specified tolerance level.
The Exponentiated Gradient method addresses the following
optimization problem B71;

min E-  [L(A
i (5 (n)]
subject to: Eﬁwe[gi(j:")] <e¢ Vie{l...,m}

Where O is the set of all possible classifiers, L(%") is the loss
function measuring predictive performance (e.g., log-loss or
mean squared error), gi(h") are the fair-ness constraint
functions, quantifying the extent to which fairness
conditions (e.g., equal opportunity) are violated for the i-th
constraint, € is the allowed constraint violation margin, and
h” is a hypothesis (or classifier).

The Threshold Optimizer in the Fairlearn library is a
fairness mitigation algorithm designed to adjust decision
thresholds of a pre-trained model to satisfy fairness con-
straints. Instead of retraining the model, it modifies how the
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model’s predictions are converted into decisions, making it
efficient and easy to integrate into existing workflows.
Threshold Optimizer takes the predicted scores from a
model and applies group-specific thresholds to ensure that
fairness constraints are met. This approach is particularly
useful for binary classification tasks, where decisions are
based on whether a prediction exceeds a threshold. The
algorithm assigns different thresh-olds for different
demographic groups, balancing fairness and predictive
perfor-mance.

Fairness constraints, such as demographic parity or
equalized odds, are specified, and the algorithm ensures that
the decision-making process respects these con-straints. The
optimization minimizes a loss function (e.g., error rate)
while satis-fying fairness conditions.

Threshold Optimizer solves the following constrained

optimization problem for a binary classification setting [3%
39].

min E[L(Y, ¥ )]
T

subjectto: gdT) <e Vie{1,...,m}
Where T = {T,}sec is the set of thresholds, one for each
demographic group g € G, L(Y, Y'T ) is the loss function,
comparing true labels Y and predicted labels Y"T derived
using thresholds 7, g(T ) are fairness constraint functions
that quantify fairness violations (e.g., difference in true
positive rates between groups), and € is the tolerance for
constraint violations. By adjusting thresholds instead of
retrain-ing, Threshold Optimizer provides a straightforward
and computationally efficient method to ensure fairness in
decision-making.
= AIF360 B This comprehensive library offers a wide
range of metrics for as-sessing fairness and techniques
for mitigating bias across the entire Al application
lifecycle. Developed by IBM, AIF360 includes methods
that can be integrated into different stages of the
machine learning pipeline to facilitate fairness-aware
modeling. It includes metrics for evaluating fairness
across different societal de-mographics and offers re-
parameterization  strategies to improve model
robustness.
Two successful mitigation algorithms will provide very
good results in reducing the bias in the ML model with
maintaining the metric chosen to measure the perfor-
mance which is Average Odds Difference (AOD).
These algorithms are Reweighing and Equalized Odds.
Reweighing is a preprocessing technique that assigns
weights to the data instances to reduce biases associated
with sensitive attributes, such as race, gender, or age.
The reweighing process ensures that different groups
are treated fairly in terms of representation when
training a machine learning model (491,
The main idea of Reweighing is to balance the dataset
so that the proportion of favorable and unfavorable
outcomes is equal across different demographic groups
defined by the sensitive attribute. The algorithm does
this by computing instance weights based on the joint
distribution of sensitive attributes and class labels.
These weights are then applied to the training dataset,
allowing the model to learn a more unbiased
representation.
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Reweighing can mitigate fairness issues such as
disparate impact or statistical parity, depending on the
fairness metric being addressed. This method does not
modify the feature values or the labels but adjusts their
importance in the training process.

Equalized Odds is a fairness mitigation method that
ensures a model’s predictions satisfy the fairness
criterion known as equalized odds. This criterion
requires that the prediction outcomes be independent of
sensitive attributes, conditional on the true outcome. In
other words, the model should have the same true
positive rate (TPR) and false positive rate (FPR) across
all groups defined by the sensitive attribute.

The Equalized Odds approach modifies the predictions
of a classifier to ensure that the TPR and FPR are
approximately equal across groups 14243 It achieves
this by adjusting decision thresholds for different
groups or directly post-processing the predictions. This
technique is a post-processing method, meaning it does
not alter the original model but modifies its outputs to
improve fairness. The algorithm is useful in
applications where fairness is critical and ensures that
predictions are fair across groups while maintaining as
much accuracy as possible.

*  What-If-Tool P?l: Created by Google, this interactive
visualization tool allows users to explore and analyze
machine learning models without requiring any cod-ing.
It supports performance testing in hypothetical
scenarios, facilitating the understanding and explanation
of model behavior. It enables users to observe model
performance across different demographics and explore
various “what-if” scenarios. It supports users in
understanding how changes in input features affect
model predictions, thus empowering them to conduct
deeper bias analysis.

Together, these tools are essential for researchers aiming to

understand and mitigate bias in machine learning

classification models, equipping them with the
methodologies to ensure equitable Al systems and informed
decision-making processes.

5. Results and Discussions

In this section, we present and analyze the results obtained
from each fairness library. The primary objective of our
analysis is to conduct a comparative study on the effective-
ness of applying individual mitigation algorithms versus
applying multiple algorithms sequentially across the three
stages of the ML lifecycle. The results demonstrate that, in
some cases, sequential applications yield better outcomes
compared to individual ap-plications, while in others, they
perform worse. These outcomes are evaluated based on their
ability to improve fairness metrics while maintaining or
enhancing performance metrics. The details for each library
are provided below. The codes and details can be found in
B3, The sensitive feature in the loan and job application
datasets that we measured the bias in is gender, and we used
the CatBoost algorithm ¥ in the classifi-cation model. The
model of the loan dataset predicts the eligibility of the
applicant for a loan, and the model of the job applicant
dataset predicts the eligibility of employment. For both
models, we use the accuracy as the model performance
metric. We investigate the model if it is biased against any
group (male/female) in gender.

www.multiresearchjournal.com

For Fairlearn, we use demographic parity difference as a
fairness metric to evaluate the bias in the machine learning
model. To address and mitigate the detected biases, we
applied mitigation algorithms at three stages of the machine
learning pipeline: prepro-cessing, in-processing, and
postprocessing.  Preprocessing  techniques  involved
modifying the training data to reduce bias before feeding it
into the model. For example, sensitive features in a dataset
may be correlated with non-sensitive features. The
Correlation Re-mover addresses this by eliminating these
correlations, while preserving as much of the original data
as possible, as evaluated by the least-squares error. In-
processing methods integrated fairness constraints into the
model training process, with approaches such as
exponentiated gradient ensuring that the model learned
fairer decision boundaries. Postprocessing focused on
adjusting the predictions after model training, ensuring that
the final outputs adhered to fairness criteria without
retraining the model such as thresh-old optimizer which is
built to satisfy the specified fairness criteria exactly and with
no remaining disparity 3% 33361,

Beyond these individual techniques, we also explored the
use of combined mitigation approaches, where two
algorithms were applied in series to enhance fairness
outcomes. For instance, preprocessing adjustments were
complemented by postprocessing tweaks, leading to
improved alignment with both accuracy and fairness
objectives. This com-bined approach aimed to leverage the
strengths of each mitigation stage to produce more equitable
and reliable model predictions.

The evaluation process identify the best algorithm/s as the
one that achieve a dual objective: minimizing bias metrics
like demographic parity difference while maintaining
performance metrics such as accuracy, precision, and recall.
Our findings highlight the importance of an integrated
approach to fairness, where multiple strategies are utilized in
conjunction to address complex biases inherent in structured
datasets.

Fig 1 presents the results of fairlearn applied to the two
datasets. For the loan dataset, the baseline model, prior to
implementing any mitigation algorithm, achieved a
performance metric (Accuracy) of 0.7818 and a fairness
metric (Demographic Parity Difference) of 0.0672. For the
job application dataset, the baseline model, prior to imple-
menting any mitigation algorithm, achieved a performance
metric (Accuracy) of 0.8378 and a fairness metric
(Demographic Parity Difference) of 0.1046. Ideally, the
accuracy would be 1.00, and the demographic parity
difference would be 0.00. To address bias, we applied
mitigation algorithms both individually and sequentially,
using two different algorithms at distinct stages of the
machine learning lifecycle. For the loan dataset, the best
result is obtained by the exponential gradient algorithm,
which maintained an accuracy of 0.7638 and reduced the
demographic parity difference to 3.17%. For the job
applicants dataset, the best result is obtained by the
sequential algorithms Correlation Remover + Threshold
Optimizer, which maintained an accuracy of 0.8369 and
reduced the demographic parity difference to 0.38%.
Notably, overall performance of some individual application
of the mitigation algo-rithms is better than the sequential
algorithms as we see from Fig 1 plots. Both exponentiated
gradient and  threshold optimizer reduced the
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bias in the models and maintained their performance. On the
other hand, there is no sequential algorithms hold a good
performance across the two datasets.

For AIF360, we employ both individual mitigation
algorithms as well as two distinct mitigation algorithms
within each stage of the machine learning pipeline to
comprehen-sively address bias. We use the fairness metrics
Statistical Parity Difference, Average Odds Difference,
Equal Opportunity Difference, Theil Index, and Generalized
Entropy Index. We employ the mitigation algorithms
Reweighing, Disparate Impact Remover, Adversarial
Debiasing, and Calibrated EqOdds.

In the preprocessing stage, Reweighing assigns weights to
instances based on their representation in different
demographic groups. This approach ensured a balanced dis-
tribution of data, directly addressing biases embedded in the
training dataset.

In the post-processing stage, Equalized Odds imposes
constraints during model train-ing to ensure that predictive
outcomes were not disproportionately distributed across
sensitive attributes such as race or gender. By enforcing
parity in true positive and false positive rates, Equalized
Odds can enhance fairness without significantly
compromising model performance.
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By looking at the two plots in Fig 2, one can recognize that
the mitigation algo-rithms are not effective in reducing bias
in the models as much as the ones of the Fairlearn library as
shown in Fig 1. Fig 2 shows a pattern for the impact of the
mitigation algorithm applications to the model performance
both in individual and sequential order. The best algorithms
in maintaining the model performance are Reweighing,
Disparate Impact Remover, and Calibrated EqOdds in
individual order, as well as Reweighing + Calibrated
EqOdds in sequential order where the accuracy of the
original model is 78.18% for the loan dataset and 83.78%
for the job applicant dataset and after applying these
mitigation algorithms the accuracy did not change much.
Regarding the bias in the models, both individual and
sequential algorithms do not show much impact in re-ducing
bias. On the contrary, some individual and sequential
algorithms have increased the bias in the models.

Our findings underscore the importance of selecting
appropriate mitigation strategies tailored to specific stages
of the machine learning pipeline. By leveraging the effective
mitigation algorithms, we demonstrated that it is possible to
achieve a balanced trade-off between fairness and accuracy,
highlighting the potential of integrated approaches to bias
mitigation in structured datasets.
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Fig 1: The results of applying Fairlearn to loan and job application datasets with classification model after applying the mitigation algorithms
one at a time and in sequential order

In the What-If Tool, there is no mitigation algorithms to
reduce the model bias. Therefore, we do not discuss this
library here in the paper for comparing between mit-igation
algorithms. Instead we demonstrate that the bias may change
by adjusting the threshold for the labeled class that impacts
both the model’s performance and its bias metrics. The
optimal thresholds identified for this model were 0.2 and

0.4. At these thresholds, the model performance metric
(Accuracy) increased from 0.33 to an average of 0.62,
representing a 29% improvement, while the bias metric
(Demographic Parity Difference) decreased from 0.19 to
0.01, reflecting an 18% reduction. These results are
summarized in Table 3.
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AIF360 - Loan Detaset

Facewracy ()

Fig 2: The results of applying AIF360 to loan and job application datasets with classification model after applying the mitigation algorithms
one at a time and in sequential order

6. Conclusion

This work examined the fairness of machine learning
models with classification tasks using structured datasets,
focusing on how biased predictions can reinforce systemic
inequalities. Kaggle datasets were analyzed to provide the
model fairness, utilizing two fairness libraries Fairlearn
(Microsoft) and AIF360 (IBM) to evaluate and mitigate
bias. We discussed a comparative study of applying the

mitigation algorithms of these libraries individually one at a
time in one of the ML stages including pre-processing, in-
processing, and post-processing versus applying the
mitigation algorithms in a sequential order at more than one
stages at the same time.

For the Fairlearn library, we observed that applying the
mitigation algorithms both:

Table 1: The results by applying What-If-Tool library to the classification model

Thresholds Demographic Parity | Demographic Parity Performance Change Fairness Improvement Using
Male (DPM) Female (DPF) Using Average Accuracy Score | Demographic Parity Diff = DPM - DPF

Bas(e)llne 0.303 0.112 0.33 0.19
0.63 0.01

02 0.566 0.551 30% better 18% better
0.61 0.01

0.4 0.628 0.611 28% better 18% better
0.55 0.02

0.6 0.655 0.627 22% better 17% better
0.50 0.03

0.8 0.716 0.686 17% better 16% better
0.45 0.01

0.9 0.702 0.689 12% better 18% better

0 0
10 0 0 33% worse 19% better

individually and in a sequential order have a good power in
reducing the bias in the model. Some individual applications
such as exponentiated gradient and threshold op-timizer
showed better performance in reducing bias and maintaining
the model per-formance over the sequential application of
the algorithms. However, no sequential algorithm
consistently maintained high performance across both
datasets.

In contrast, the AIF360 library’s mitigation algorithms
showed less effectiveness in reducing bias while
maintaining model performance. Sequential algorithms in
AIF360 had minimal impact on bias reduction and, in some
cases, increased bias in the models. Overall, the study

demonstrated that Fairlearn algorithms outperform those in
AIF360 in balancing fairness and model performance.
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