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Abstract

This paper presents a novel application of the improved
modified extended tanh-function method to derive exact
traveling wave solutions for the space-time fractional
modified third- order Korteweg-de Vries (KdV) equation.
The fractional derivatives are considered in the con-
formable fractional derivative form. The proposed method
systematically reduces the nonlinear fractional partial

which is then solved using a generalized ansatz. A specific
kink-type solitary wave solution is obtained in closed form.
The results demonstrate the robustness and efficiency of the
method for handling com- plex nonlinear fractional
differential equations, providing valuable new solutions that
enhance our understanding of wave propagation in fractional
media.

differential equation to an ordinary differential equation,
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1. Introduction

Nonlinear fractional partial differential equations (NLPDEs) play a pivotal role in modeling complex phenomena across
various scientific disciplines, including fluid dynamics, plasma physics, optical fibers, and biological systems. The fractional
calculus framework, incorporating memory and hered- itary properties %, provides a more accurate description of such
processes than its integer-order counterpart. Among these models, the space-time fractional modified third-order KdV equation
holds significant importance due to its ability to describe wave propagation in dispersive media with fractional effects.
Determining exact analytical solutions for such equations is crucial, as these solu- tions offer profound insights into the
underlying physical mechanisms and serve as benchmarks for numerical simulations.

In recent years, numerous analytical techniques have been developed to derive exact solutions for NLPDEs. Notable methods
include the (G/G)-expansion method [ '2 161 the exp-function method ['4], the Kudryashov method >4, the sine-Gordon
expansion method !, Hirota’s bilinear method [* ! 131, and the extended tanh-function method [ 3], Each method possesses
unique strengths in handling specific types of nonlinearities and dispersion relations. The improved mod- ified extended tanh-
function method ['8], utilized in this study, is particularly effective due to its systematic procedure and ability to generate a wide
spectrum of solutions, including solitary waves, periodic solutions, and singular solutions.

The primary objective of this paper is to apply the improved modified extended tanh-function method to obtain novel exact
traveling wave solutions for the space-time fractional mKdV equation. The fractional derivative is considered in the
conformable sense, which satisfies many properties of standard integer-order calculus. The obtained kink-type solution is both
novel and physically significant. The reliability of the method is verified by checking the solution against the original equation.
Furthermore, graphical interpretations are provided to visualize the dynamic behavior of the wave. This study demonstrates
that the proposed method is a potent mathematical tool for investigating nonlinear fractional differential equations.

2. Conformable Fractional Derivative

The conformable fractional derivative, introduced by Khalil et al. ', offers a natural and compu- tationally tractable
generalization of the standard derivative. For a function f: [0, o) — R, the conformable derivative of order a € (0, 1] is defined
as 171
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ft+et'™) = f(0)

£

t>0.

T)(®) = lim
If the limit exists, fis said to be a-differentiable. This definition satisfies the following properties:
« T.laf +bg) =aT.(f)+ bTy(g) for a,b € R
w To(tP) =ptP %forp eR

L _ gTa(f)—fTu(g)
" T“ (q) - g*

1—c:ﬁ

= "% This property is frequently used to simplify fractional differential equations via a

1 f is differentiable, then T« ) (8)
suitable transformation.

3. The Improved Modified Extended Tanh-Function Method
Consider a general nonlinear fractional PDE of the form:

H(u, up, Uy, Uy, ) = 0 (0

Where H is a polynomial in (%, t) and its fractional partial derivatives. The fundamental steps of the improved modified
extended tanh-function method are outlined below.

3.1 Traveling Wave Reduction
We introduce the complex wave transformation:

u(x,t) =u(l), 1= wx-—At, Q)

Where k and w are nonzero constants representing the wave number and frequency, respectively. Applying this transformation
to Eq. (2) reduces it to an ordinary differential equation (ODE):

Hu,u',u",u'",...) =0 3)
Where the prime denotes the derivative with respect to .

3.2 Solution Ansatz
The method assumes a solution in the finite series form:

w(@ =Yt a;Y + X, by, @

Where a;, b; are constants to be determined, and # is a positive integer found by balancing the highest-order derivative with the
nonlinear term in Eq. (3). The function Y ({) satisfies the auxiliary Riccati equation:

Y@ =efco+ Y + Y2+ Y3 +¢,Y%, e=+1 (5)
Where ¢; (j =0, . . ., 4) are real constants. By choosing specific values for ¢;, various fundamental solutions for u({) can be

recovered (e.g., hyperbolic, trigonometric, Jacobi elliptic functions). For instance, setting ¢i = ¢3 = 0, ¢2 < 0, ¢4 > 0, and
e = ci/(4cs) yields the kink solution:

u(l) = E\/jz%tanh( —:i (',) (6)

4. Application to the Space-Time Fractional mKdV Equation
We consider the space-time fractional modified third-order KdV equation Bl:

DXu(x,t) + pu?(x,t) Dfu(x, )+ quﬁu(x, t)=0, 0<a=B<1 )
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Where p and g are nonzero constants. Applying the wave transformation:

ulx,t)=u(@), = u)x—ﬂ— ?lﬂ
' ' B « (8)

and using the properties of the conformable derivative, Eq. (7) reduces to the integer-order ODE:

(@) + wprQu' Q) + wiqu (D) = 0 ©)
Integrating once with respect to {"and setting the integration constant to zero gives:

3wqu’ () — 3Au(Q) + wpu(Q) =0 (10)
By balancing the highest-order linear term with the nonlinear terms in Eq.(10) we obtain:

n—2+r =3n (11)
Since » =4, we have n = 1. Substituting » = 1 into, we have:

u(l) =ay+a,Y + b Y1 (12)

Substituting Eq. (12) and the auxiliary equation (5) into Eq. (10) yields a system of algebraic equations. Equating the
coefficients of different powers of Y to zero, we obtain the following system:
Solving this system, we obtain a family of solutions. A particular non-trivial solution correspond- ing to kink-type waves is

found by choosing parameters such that ¢; = ¢3 =0, ¢2 <0, ¢4 > 0, and, 0= 4. This yields:

ag = 0, a); = ay, g=1

. P / 8piq 1 | sp q
c3ay 3a, V™7 \ 2ty — 7

by , W

2Cq 11"1 2;11[ . 21': -'"rf (13)

Substituting these parameters into the ansatz (12) and using the kink solution (6) for u({), we obtain the exact kink-type
solution for the fractional mKdV equation:

-1
3 o G _022“1 _ & _a
u(@) = ﬂnj:cdm“h(\ 2 ?’) 2¢, (\/chmnh(\l 2 ?’)) (14)

xP t®
$=@F =2 The constants @1:€2:€4 are free parameters subject to €2 <= 0 and s > 0 to ensure the solution is real-

Where
valued.

5. Discussion

A potent mathematical model for explaining nonlinear wave propagation in complex dispersive me- dia, where both spatial and
temporal dynamics display anomalous diffusion or memory effects, is the Space—Time Fractional Modified Third-Order
Korteweg—de Vries (KdV) Equation. The fractional version adds fractional derivatives in space and time, allowing for a more
accurate representation of nonlocal interactions and hereditary behaviors inherent in many physical systems, in contrast to the
classical KdV equation, which mainly uses integer-order derivatives to capture shallow water wave phenomena. Applications
of this equation can be found in solid-state physics, fluid dynamics, plasma physics, and optical fibers, where the evolution of
compactons, shock structures, and solitary waves differs from classical behavior. The model offers a more comprehensive
explanation of energy dispersion and dissipation by integrating fractional calculus, which enables more accurate control and
comprehension of intricate nonlinear dynamics.

In order to investigate the behavior of soliton solution (14) and evaluate the physical relevance of the solutions obtained by
choosing appropriate values for unknown parameters, a two of Matlab- created graphs are presented. Figs. 1 and 2 show a
singularity at x = 0. The behavior is symmetric around the singularity, with a fast climb to positive infinity on one side and a
drop to negative infinity on the other. This is characteristic of a pole-type solution, often known as a singular soliton. We
noticed that by decreasing the fractional orde a, f, the amplitude of the solution is decreasing.
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Fig 1: The 2D singular soliton corresponding to u(x, {) witha =1, f=1
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Fig 2: The 2D singular soliton corresponding to u(x, ¢) with « = 0.8, f#=10.8

6. Conclusion

The improved modified extended tanh-function method was successfully applied to the space-time fractional modified third-
order KdV equation. The method efficiently reduces the fractional PDE to an ODE, and a new exact kink-type solitary wave
solution was derived. The solution’s structure was determined by selecting specific constants in the auxiliary equation,
showcasing the method’s adaptability and power. This work confirms the efficacy of the improved modified extended tanh-
function method as a potent tool for extracting exact solutions from nonlinear fractional differential equations. The obtained
solution provides a new analytical benchmark for understanding wave propagation in complex media with memory effects,
such as viscoelastic materials or plasma waves. Future work could involve studying the dynamic properties of this solution and
applying the method to other fractional integrable systems.
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