

266

Int. j. adv. multidisc. res. stud. 2025; 5(6):266-275

Multi-Tenant AI Applications on OCI: Design Patterns for Scalable and

Secure Agent-as-a-Service Frameworks

1 Soumit Roy, 2 Mayank Agrawal
1 Data & AI, Jade Global Inc, India

2 AI, TRP Global, India

Corresponding Author: Soumit Roy

Abstract

This paper explores scalable design patterns and

architectural strategies for deploying multi-tenant AI

applications on Oracle Cloud Infrastructure (OCI) using an

Agent-as-a-Service (AaaS) framework. It evaluates

containerized and event-driven agent deployments, enforces

multi-tenant isolation, and leverages reinforcement learning

for dynamic autoscaling. The research identifies key

architectural primitives and offers secure, reproducible

implementation patterns aligned with OCI's native services,

including Kubernetes (OKE), Terraform, IAM, and

Observability. The proposed model enhances cost-

efficiency, security, and lifecycle automation in AI

microservices.

Keywords: Multi-Tenancy, Agent-as-a-Service, Oracle Cloud Infrastructure, OCI, Microservices, Reinforcement Learning,

Kubernetes, Secure AI, Cloud Architecture, AI DevOps

1. Introduction

1.1 Background on AI Workloads and Multi-Tenancy

▪ Explosion of agent-based AI applications: LLM-powered chatbots, autonomous agents, and analytics engines.

▪ Multi-tenancy in cloud computing allows multiple clients to share infrastructure with logical/physical isolation.

1.2 Motivation for Agent-as-a-Service Architectures

▪ Need for scalable, reproducible, and secure AI workloads.

▪ Transition from monolithic AI APIs to modular, containerized agents offering task-specific services.

1.3 Objectives of the Study

▪ Design and evaluate a scalable and secure AaaS framework on OCI.

▪ Identify reusable design patterns for multi-tenant AI microservices.

1.4 Scope and Limitations

▪ Focus on OCI-native tools: OKE, IAM, Object Storage, Observability.

▪ Reinforcement learning used only for autoscaling—not policy optimization or behavior modeling.

2. Theoretical Foundations and Literature Review

2.1 Evolution of Multi-Tenant Architectures in Cloud Environments

The idea of multi-tenancy has greatly diversified since the beginning when it was merely simple partitioning of virtual

machines to the much more advanced and modern aspects of service oriented and policy enforcement-based models. With

cloudnative modern architecture, isolation between tenants appears at multiple levels of the stack (network, identity,

application) and enables multiple distinct tenants to consume their shared infrastructure concurrently and in a secure and

otherwise governance-bound manner. The methodology has gained essentiality in the application of AI and ML in cases that

contain data-heavy and volatile workloads. Multi-tenancy is becoming a default feature provided by SaaS cloud service

providers, typically using container and orchestration platforms and software-defined networking configurations. In

Received: 19-09-2025

Accepted: 29-10-2025

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

267

Kubernetes, namespaces are also regularized and applied to

tenants, in conjunction with network policies and admission

controllers. In a cloud-native workload, the multi-tenancy

model is increasingly based on identity-based access

control, adaptation, and enforcement of policies particularly

associated with fine-grained resource quotas. The paradigm

being used in 2025 is the basis of providing AI solutions at

scale to different client teams in the one but secure

partitioned system. The development is also in line with the

necessity of the adherence to regulatory frameworks like

GDPR, HIPAA, and PCI-DSS that require tenant-level data

isolation and control (Mekala, 2025) [13].

2.2 Scope and Limitations

The cluster networking of OCI, with the Remote Direct

Memory Access (RDMA) using converged Ethernet (RoCE)

protocol, supports up to 100 Gbps of bandwidth between the

compute nodes which will enable training and scaling large

models in AI. The Oracle Kubernetes engine (OKE)

facilitates autoscaling by an AI agent of several node pools,

includes identity policies and OCI IAM that is used to

enforce least-privilege accessibility. Other services like OCI

Data Science, Object Storage using customer managed

encryption keys (CMEK), and the Resource Manager

(Terraform-as-a-Service) builds upon the capabilities of the

programmability and security posture of multi-tenant

deployment. OCI also sits in hybrid and regulated cloud

marketplace making it even more relevant to enterprise-level

hosting of AI agents where compliance, data locations, SLA

are paramount.

Fig 1: Enable secure and scalable self-service platforms for

generative AI and LLMs within OCI (Oracle, 2024)

2.3 Agent-Based AI Systems: Definition and Architectural

Taxonomy

The agent-based AI systems constitute autonomous or semi-

autonomous software, which, by perceiving or thinking

about its environment, make decisions and then take actions

based on the decisions to the achievement of pre-determined

goal. These agents may be as simple as a set of rules to more

complicated reinforcement learning based agents which can

plan in the long horizon. The pattern applicable in cloud-

native scenarios is the Agent-as-a-Service (AaaS) pattern

described as a model of deployment where AI agents can be

encapsulated as separate microservices, which have APIs or

event-driven interfaces to interact with. Architecturally,

agents can be considered as reactive or deliberative agents,

the former are not equipped to internal state modeling of

stimuli whereas the latter possess internal state modeling,

memory and plans. OCI may also have multi-agent systems

(MAS) that have hierarchical use of agents with supervisory

agents coordinating the activities of subsumptive agents.

These are the architectural differences that affect the

deployment, scaling, and securing agents. Stateless agents

will lend themselves better to (horizontal) scaling but might

need to have a mechanism to handle a long (long) term

memory or state (such as Redis or Object Storage) available

with some persistence. Taxonomy of agent-based systems

has a direct effect on the resource allocation, lifecycle

automation and fault tolerance that is vital in multi-tenant

environment where performance susceptibility has to be

closely regulated (Anbalagan, 2024) [1].

2.4 Design Patterns in Scalable AI System Engineering

Design of scalable AI systems using proven cloud-native

design patterns are extended to the intelligent, and

frequently compute-intensive workloads. Among them are

the sidecar pattern to inject observability and policy controls

into agent containers or the circuit breaker pattern to manage

degraded downstream services or the bulkhead pattern to

sandbox failures between tenants. These patterns can enable

elastic scaling and high availability with no costs on

performance isolation of tenants when applied to AaaS

models. Along with microservice decomposition,

containerization makes agents independently scalable,

versioned and updated, helping to implement CI/CD

pipelines adapted to AI workflow. Typical autoscaling that

is done based on the utilization of CPU or memory has been

transformed to incorporate the reinforcement learning

models, which preset the load spikes and allocate the

capacity in advance. Furthermore, service mesh, like Istio or

Linkerd, becomes a more common way to manage the east-

west traffic between agents and implement the application-

level enforcement of mTLS-based encryption and policies.

This integration with the service mesh control planes

enables zero-trust architectures, required in the multi-tenant

environment AaaS. Also, with Terraform or Helm based

pattern-based infrastructure templates, it is possible to do

repeatable deployments, which speeds up the onboarding of

new tenants and environment teardown. By 2025, the

prominent cloud providers and open-source communities are

gearing up to codify these design patterns into blueprints of

cloud-native AI architecture (van der Vlist, Helmond, &

Ferrari, 2024) [17].

2.5 Security and Compliance in Multi-Tenant Cloud

Systems

Data security is the utmost concern of multi-tenant AI

platforms especially when the tenants might be working in

regulated markets or dealing with sensitive information.

OCI manages this need to holistically carry out

infrastructure-based isolation, fine-grained IAM, and

encryption strategies that complement zero-trust ideals.

With resource-scoped access through the conditions like IP

ranges, identity domains, or workload tagging, tenants are

logically isolated through the use of compartments and

policies defined in OCI IAM. The transfer of data is secured

through TLS 1.3 and data at rest is kept through AES-256

with customer-managed key options. Side-channel attacks,

container escape possibilities are other issues that must be

considered in multi-tenant deployments; OCI addresses

these with kernel-hardening, strong container isolation rules,

and secure enclave support of higher sensitive workloads

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

268

computation. On the compliance side, OCI is certified with

very broad arrays of standards, such as SOC 2, ISO 27001,

and FedRAMP High. When security logging is centralized

based on OCI Logging and Audit service, real-time

monitoring of access patterns in the tenant is now possible,

anomaly detection, and policy violations. Such combination

allows ensuring that artificial intelligence agents distributed

in a multi-tenant architecture are secure, auditable, and

conformant to dynamically changing laws and regulations

around the world (Sharma, 2025) [16].

2.6 Reinforcement Learning in AI Agent Lifecycle

Management

Reinforcement learning (RL) is a radical change in the

lifecycle management of AI agents particularly in those

situations which demand adaptive scaling, performance

tuning or optimized behavior. With multi-tenant AaaS

platforms, RL can be used to learn how resource

provisioning strategies should be modified on a dynamic

basis, possibly due to past usage pattern, or estimated tenant

growth, or priorities. As an example, Proximal Policy

Optimization (PPO) and Advantage Actor-Critic (A2C) can

also be found in cloud controllers where they learn optimal

scaling policies in light of constraints, which include budget,

energy consumption constraints and latency SLAs. Such RL

agents on OCI can be trained using OCI Data Science

notebooks and deployed using OKE custom containers and

observed using the OCI Observability stack. Not only can

the agent lifecycle of an initialization, warm start, training,

inference, and decommissioning be orchestrated, but also

with event-driven mechanisms (such as OCI Events and

Functions). Performance Anomaly detection can also be

performed automatically by RL which is applicable in

performing corrective behaviour like restarting improperly

behaved agents or modifying the concurrency throttles. The

most important development is that in 2025, distributed RL

frameworks will integrate with Kubernetes native

scheduling enabling dynamic resource scheduling based on

learned policies. This not only allows an AI platform to

scale horizontally but also to do so in a data-driven and

workload-aware context, enhancing efficiency and user

experience on shared and multi-tenant overlay.

2.7 Emerging Trends in AI DevOps and Federated

Governance

The emergence of AI DevOps has tilted the paradigm to the

ability of continuous delivery of intelligent agents as

compared to conventional ML pipelines. This recurring is

creating new versioning, governance and reproducibility

fashions. Such issues as version conflicts, dependency-drift,

and security misconfigurations, might attack versions

deployed in downstream tenants in a multi-tenant AI

admiralty unless controlled. Containers abstractions and

container images Containers are increasingly managed using

tools like OCI DevOps, GitOps pipelines using ArgoCD,

and OCI Artifacts repositories. Federated management,

where various personnel or business departments develop

operational control of their agents but in accordance with

centralized policy architecture has become a necessity. OCI

facilitates the same through IAM domains, hierarchical

policy inheritance, as well as custom tagging that permit

creating governance scopes without losing agility. The Open

Policy Agent (OPA) is an example of policy-as-code (PaC)

that is currently integrated into AI DevOps processes, in

which all deployment artifacts have to be compliant with the

prerequisite rules. There is also the emerging prominent

metadata management on ML which provides solutions

against lineage tracking, drift detection, and explainability

metadata that allow auditability. Due to the increased

complexity of AI systems, the model monitoring practice

became an OCI first class citizen, which is possible in

CI/CD with OCI being integrated with Prometheus, Grafana,

and Alert policies (Golightly, Chang, Xu, Gao, & Liu, 2022)
[7].

3. Architectural Framework

3.1 Overview of Agent-as-a-Service on OCI

The introduction of the Agent-as-a-Service (AaaS) paradigm

presents the possibility of a modular deployment model in

which each of the AI agents functions as the autonomously

scalable microservice. In Oracle Cloud Infrastructure (OCI),

the architecture model is highly enabled by a cloud-native

stack that is flexible, yet supplies performance and

governance on the scale. The AaaS design is assembled on

containerized agents provided on the Oracle Kubernetes

Engine (OKE), orchestrated in a central way, tracked and

controlled identities. Agents are AI components that can be

stateless or stateful and are available via APIs or event

triggers, and have the capabilities to serve user interactions

or backend computations independently. Both OCI-adorning

and OCI-native services, e.g., OCI functions, OCI API

gateway, and OCI IAM can be aligned. This way developers

can create an entirely integrated, and enterprise-grade multi-

tenant system. The architecture utilizes native OCI

networking and security policy as well as autoscaling

functions so that agents can be streamlined across various

tenant environments without overloading performance or

data-isolating facilities (Lee, 2021) [12].

3.2 Multi-Tenant AI Service Layers

The architecture uses logic layers to segment itself and

encapsulate multi-tenancy, secure, and scale. The baseline

level encompasses compute and networking capacities built

with virtual networks on clouds, subnets, and security lists.

One layer is the platform layer that includes orchestrators,

identity providers, and control-plane services that are used

to both provision and scale agents. The application layer has

the AI agents themselves, all in their own namespace or

compartment.

Table 1: OCI Resource Allocation Across Tenants

Tenant ID Namespace

CPU

Limit

(vCPU)

Memory

Limit

(GB)

Storage

Quota

(GB)

Network

Bandwidth

(Gbps)

Tenant-A ns-tenant-a 16 64 500 10

Tenant-B ns-tenant-b 8 32 250 5

Tenant-C ns-tenant-c 12 48 400 8

Tenant-D ns-tenant-d 20 80 800 12

The isolation between the tenants in the OCI-based AaaS

systems is provided by a pairing of constructions used in the

Kubernetes cluster, the IAM compartment policies, and the

construction of OCI tenancies. A separate compartment

containing a specific tenant is assigned to each on a scoped

access to compute and storage resources and monitoring.

Network-level isolation is implemented with the help of a

dedicated virtual cloud networks and the security lists in

order to avoid lateral movement within the tenants’

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

269

environments. In multi-agent systems, Kubernetes Network

Policies limit pod-to-pod communication to a tenant-scoped

region.

These isolation techniques will make sure that a failure or

compromise in the work of one tenant does not leak across

others, and maintains both the security and the quality of

service. Namespaces provide a logical unit of workload

isolation in OKE cluster allowing multi-tenant agents to

coexist in the same cluster but with separation of resource

consumption, policy enforcement, and visibility. By proxy

of limiting available resources, resource quotas both are set

at the namespace level so as to limit CPU, memory, and

storage usage and consecrate noisy neighbor concerns. Java

applications are a good example of applications scoped to a

namespace, and Java applications could be configured to use

namespace scoped Config Maps, Secrets, and Persistent

Volume Claims to store secrets and tenant specific

configurations. At this level of granularity, the architecture

not only fosters modularity, fault confinement, and

governance within a multi-tenant environment comprised of

agent ecosystems, but also the safe encapsulation of

resources (Kapuruge, Colman, & Han, 2011) [9].

Fig 2: Resource allocation profiles across tenants showing CPU,

memory, and storage distribution. Tenant-D requires highest

resource allocation (Source: Mekala, 2025) [13].

3.3 Service Mesh and Inter-Agent Communication

An east-west communication between individual AI agents

in the infrastructure is serviced using a service mesh.

Lightweight service mesh like Istio is incorporated into

OKE in this architecture to facilitate observable, policy-

enforced, and secure service-to-service communication.

Every AI agent is also deployed using a sidecar proxy which

enables both TLS encryption (mutual with one another), rate

limiting, retry policies, and services to be discovered. The

mesh separates service logic and network management, and

allows developers to concentrate on agent behavior, and

leaves traffic routing and policy enforcement to the mesh.

As well, mesh telemetry information is useful in monitoring

as well as pinpointing performance bottlenecks or even

failure points.

3.4 Policy-Driven Scaling Models

The architecture has the policy-aware autoscaling

techniques in the architecture which determine dynamic

alteration of agent capacity in line with the measurements of

the workload. HPAs and custom metrics are set up along

with OCI Monitoring to signal the scaling events. In more

complex cases, reinforcement learning is employed to

forecast resource requirements and thereby optimize scaling

behavior relying on past trends. These scaling policies will

be tenant-conscious and scoped to namespace-level

thresholds to be able to have fine-grained control over how

and when an agent scales. It is used to guarantee the best use

of the resources and responsive provision of services based

on the load or how unstable it is.

3.5 Container Orchestration & OCI K8s Engine (OKE)

Integration

OKE is used to manage containerized agents on the

infrastructure with its use as the primary orchestration layer.

OKE clusters are given the configuration of node pools that

match tenant groups within the cluster with taints and

tolerations that guarantee that the scheduling of the agents is

done on specific nodes. OCI also makes it easy to autoscale

pods and node pools, which can then scale according to

current adoption requirements. Further enhancing the

security by providing the means that limit access even to the

secrets and the runtime configurations at once, one can

combine OKE with OCI IAM and OCI Vault. Helm charts

are used to achieve reproducibility in their deployment

pipelines and OCI DevOps is used to automate the

continuous delivery of the agent images and configurations

(Kodakandla, 2023) [11].

3.6 Data Security and Confidentiality by Design

The architectural framework is designed to support security

by having it incorporated at every stage of the structure so

that data can have confidentiality, integrity, and availability.

All the agents read encrypted data sources through API calls

(authenticated via IAM), and keys are kept by OCI Vault.

The TLS 1.3 is used to secure network communications and

encryption-at-rest is implemented in all persistent storage

back ends. Least-privilege IAM policies and contextual

criteria (e.g. an IP range, so-called identity tags) can be

enforced to enforce access control. OCI Logging centralizes

the audit logs and pipes them to OCI Logging Analytics to

find anomalies. When combined, the controls form a zero-

trust baseline of secure multi-tenant AI agent deployment.

4. Design Patterns for Agent-as-a-Service

4.1 Stateless vs. Stateful Agent Deployment Models

Stateless agents are also constructed without the memory of

previous transactions, which makes them one which has a

lot of scale and can be treated in a manner that is parallel

processing across distributed infrastructure. Such agents can

be easily cloned and destroyed depending on the demand

without the loss of functioning.

Conversely, stateful agents have maintained state between

sessions, and thus need to be run with persistent storage or

volumes backed by memory. AaaS framework will embrace

both models where stateful agents will undergo a

Deployment controller standard, whereas stateless agents

can utilize the StatefulSet provision in Kubernetes. This

partitioning allows the platform to provide conversational

agents, both real time and long-running planning or

monitoring services, as appropriate in the application

scenario (Kodakandla, 2022) [10].

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

270

4.2 Event-Driven and Asynchronous Agent Execution

With event-driven execution, the agents can react to a

particular trigger, e.g. to a message queue, or to an object

storage upload, or to an API request. OCI Events and

Functions are used to invoke operations asynchronously and

make some processing of tasks non-blocking and scalable.

The execution of the agents could be adhered through

webhook calls, OCI Notifications or by the thrown internal

events by other agents. This design reduces inefficient use

of compute, and can support just-in-time scaling. It is also

where its ability to chain the services of agents comes in

whereby the output of one agent is used as the input of

another agent to enable multilevel decision pipelines and

automation of tasks in multi-tenant systems.

Table 2: Agent Deployment Models and Characteristics

Agent Type Stateful/Stateless Use Case Example Storage Dependency Deployment Strategy Intent Router

Intent Router Stateless Message classification agent None Horizontal Deployment (HPA)

Session Tracker Stateful Long conversation handler PVC or Redis StatefulSet with Volumes

Image Annotator Stateless Vision inference engine Optional (cache) Deployment with Pod Autoscale

Diagnostic Engine Stateful Health risk prediction agent Persistent Storage StatefulSet with Affinity

4.3 API Gateway Patterns for AI Agent Invocation

OCI API Gateway can be used to unify the invocation of AI

agents, apply authentication, rate limits, and paths. Agents

all have a dedicated endpoint, and routes that are mapped to

services in respective tenant namespaces. API Gateway

level policies can also be established to make sure that only

authorized requests are applied against underlying agents

which guard against the abuse of these APIs or unwanted

access. The gateway allows the transformation of requests

and injection of the client header, so that the clients may

pass in contextual ID or session tokens. With this

centralized access pattern, it is easier to integrate with front-

end applications or with other external systems.

4.4 Multi-Tenant Identity Federation and RBAC

Enforcement

The federation of identities enables tenants to log in using

their identities maintained through identity providers when

using shared infrastructure on OCI. The architecture

incorporates OCI IAM and a third-party provider of identity

by using SAML or OAuth2. To limit what users can access,

Role-Based Access Control (RBAC) is used both at the

Kubernetes and OCI IAM level to segregate what a user can

access according to their role, group, and compartment.

Namespaces-specific roles allow users to work with the

resources of only their tenants, and granular permissions are

provided with the help of custom policies, allowing the user

to interact with agents, secrets, and telemetry. The controls

have been regulated so that tenants can safely exercise their

management over their agents without endangering their

violation of cross-tenant access (Nagelli & Kumar, 2023)
[14].

4.5 Horizontal Scaling with Reinforcement Learning-

Driven Policies

Reinforcement learning models that get trained on the

workload patterns, resource utilization and agent-specific

latency are applied to power scaling decisions. The models

forecast increases in demand and help suggest the optimum

pods or resources to achieve. The RL-based policies, in

contrast to the static threshold-based scaling, can adjust to

both the tenant individual usage patterns and temporal non-

stationarity, like daily or seasonal spikes. The latter are

implemented as sidecar agents/external controllers that

configure HPAs in real time. This method minimizes the

over-provisioning but still attains the service-level goals and

enhances the all-round efficiency in the use of resources by

multi-tenants.

4.6 Circuit Breaker and Retry Patterns for Fault Tolerance

Circuit breaker patterns are applied to service mesh and

applications in order to improve fault tolerance. In case of

repeated failures or time outs experienced by an agent, the

circuit breaker will ensure that no more requests are

transmitted to it, hence the minimal disruptions on the

upstream services. Exponential back-off Retry policies are

employed in order to succeed in handling transient failures

gracefully. These processes are important in multi-tenant

controls where the failure by one agent is not supposed to

impair the entire system. Configuration is done either by

using service mesh policies or by using custom middleware

in agent code, depending on the required granularity and

latency requirements.

4.7 Observability, Logging, and Metrics Propagation

Observability is implemented as a combination of logging,

metrics and distributed traces tools. Each agent writes well-

formed logs to OCI Logging, which are annotated with

metadata per tenant to be filtered and analyzed. The

exporters monitor the metrics through Prometheus and

Grafana dashboards are used to display them.

With the help of OpenTelemetry, distributed tracing is

possible, and you can get an end-to-end view of the flow of

requests, involving multiple agents and services. Such

observability patterns enable operators to identify their

bottlenecks, track the adherence to SLA, and troubleshoot

production problems. The multi-tenant offers advantages

such as tenant-specific dashboards/alert operation so that

individual groups of teams are monitoring their groups of

agents, without impacting the other tenant groups (Kambala,

2023) [8].

5. Implementation Methodology

5.1 Infrastructure Provisioning using OCI Terraform

Modules

Mode of operation: The whole mode of operation is initiated

by providing infrastructure by Infrastructure as Code (IaC)

tools. Terraform is available as native support in OCI, and

Terraform is used to declaratively describe and create

compute instances, virtual cloud networks (VCNs),

Kubernetes clusters, IAM compartments, and object storage

buckets. The predefined OCI Terraform modules are used to

maintain consistency and make sure device similarities

among several environments. These modules hide the

intricacy of handling the resources dependency and it

guarantees that all structures are in compliance with the

security and networking policies of the enterprise.

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

271

Deployment Workspaces in OCI Resource Manager are

utilized to control the Terraform runs, and they can be

version-controlled and audited. With this approach, it is

possible to minimize manual intervention, implement

policy- as- code and have the DevOps teams instantiate

tenant specific environments in a fast and secure way.

5.2 Agent Lifecycle Automation Pipelines

An AI agent has its lifecycle (development to

decommissioning) automated by the aid of continuous

integration and continuous delivery (CI/CD) pipelines. OCI

DevOps service is being used towards code commit,

construction of images, preservation of artifactual resources

and deployment to OCI Kubernetes Engine. Every AI agent

lives in an individual Git repository with structured

manifests according to which it is deployed, which

dependencies it needs at run-time and what configuration

options it supports. When a commit or a merge is made, the

pipeline starts new container builds on OCI Container

Registry, and performs the security scan and vulnerability

report automatically. Once confirmed, deployment manifests

are used on target OKE clusters so that deployment is safe

via blue-green/canary techniques. Not only does this

automation of the lifecycle increase the speed of

development but ensures standardized deployment and

rollback workflows, which are critical to multi-tenant

systems with their necessity of high uptime and uniformity

(Nagelli & Shekar, 2016) [15].

5.3 Reinforcement Learning Environment Setup for

Autoscaling

Each agent pool will be implemented with a reinforcement

learning (RL) environment responsible in order to facilitate

intelligent and automated autoscaling of agents. That

environment is constructed on OCI Data Science service,

where notebooks produced by Jupyter-Notebooks run

simulations of past telemetry data to train scaling policies.

The RL agent setup is meant to monitor loading on the CPU,

use of memory, and throughput within the whole request

and it responds to a modeled environment which imitates the

actions of the implemented agents. Actions are increasing an

existing capacity, reducing capacity or sustaining it, and the

reward involves trying to meet service-level targets with the

least use of resources. After training, the RL model is

containerized and it is run in the form of a background

service that dynamically scales Horizontal Pod Autoscaler

(HPA) thresholds with the Kubernetes API. This enables a

proactive response on the part of the system to workload

trends not covered by threshold-based policies.

5.4 Deployment of Model Inference Services

The common specification of AI agents would involve

making inferences using pre-trained models to undertake

classification, recommendation, or natural language

processing. These models are distributed as microservices to

run with the agents or they can be reached remotely via

model serving endpoints. During the implementation, the

TensorFlow serving and ONNX Runtime are employed to

access the REST and gRPC apis to expose models. To

reduce latency each model service is deployed as a pod in

the same namespace as the calling agent and made to co-

locate. The model artifacts are stored in OCI Object Storage

and agents pull new versions during the deployment.

Credential provision of the model access is secured through

OCI Vault and Kubernetes Secrets mounted into the pods at

run-time. The design is modular and can be scaled,

versioned and monitored separately without interfering with

agent logic (Gadde, 2023a).

5.5 Monitoring and Alerting with OCI Observability Stack

The level or circle of operational visibility plays a

significant role in the operational system of the multi-tenant

AI systems. The framework is integrated with OCI

Observability stack, a set of observability services that

includes OCI Monitoring, Logging, and Logging Analytics

provided by OCI to develop end-to-end visibility in terms of

agents health and performance. Agents are put out to custom

metrics via Prometheus exporters which are scraped and

saved to be viewed via Grafana. Logs are sent to stream

onto OCI Logging, with log groups being configured at a

tenant or a service type level, to allow specific log analysis

and alerting. Inference latency, API response times, memory

usage, and restarts of containers are monitored as real time

metrics. OCI Alarms can be set to identify the anomalies

and send a notification through email or through webhooks.

Such observability features allow SRE teams to recognize

and remove problems rapidly, before they result in services

disruptions, offering high availability and performance.

5.6 Securing the Control Plane and Data Plane

Both the data plane and control plane security are imposed.

Security in control plane There is a certain emphasis on

limiting access to infrastructure elements like the

Kubernetes API servers, terraform modules, CI/CD

pipelines, etc. It is implemented with the help of OCI IAM

policies, the isolation of compartments, and network

security groups. Administrative operations are highly scoped

and monitored via the use of audit logs. Data plane security

also assures that agent-to-agent communication, data access,

and inference execution uses a secure medium. Data

transmitted across the network is encrypted with TLS 1.3,

data stored on disk is encrypted with OCI-managed keys and

machine learning models and other user-input data. The

security of containers is manufacturer in the security

policies of containers, seccomp profiles, and OCI

Vulnerability Scanning (Gadde, 2023b).

6. Evaluation and Analysis

6.1 Experimental Configuration and Benchmarking Tools

The provided multi-tenant AaaS framework is evaluated on

a simulated tenant workload in a production-grade OCI

facility. The lab environment will involve deploying an

OKE cluster that will have three node pools, which will

work as tenants. The execution environment comprises a

combination of stateless and stateful agents that have

differing computational demands, and replicate real world

usage patterns, including chatbot interactions, image

classification and real-time analytics. Apache JMeter,

Locust, and k6 benchmarking tools are employed to

simulate load and record responses of a system.

6.2 Performance Evaluation across Multi-Tenant

Scenarios

The system shows good throughput and stable response time

over load of multi-tenant traffic. Stateless agents will scale

linearly with increased loads whereas stateful agents have

predictable performance up to a pre-defined limitation of

memory and CPU.

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

272

Table 3: Reinforcement Learning vs. Threshold-Based

Autoscaling Performance

Metric
Threshold-Based

Scaling

RL-Based Scaling Average

CPU Utilization (%)

Average CPU

Utilization (%)
68.5 58.2

SLA Breach

Incidents
12 2

Avg Pod Provision

Time (sec)
9.5 6.1

Over-Provisioning

(%)
23 8

The average response latency of model inference services

stays under 200 ms for 95 percent of requests on a regular

basis and under 500 ms at a peak with autoscaling activated.

By implementing reinforcement learning-based scaling

policies, it is possible to achieve faster recovery and

superior resource allocation compared to the threshold-

based autoscaling scenario. Moreover, service mesh traffic

routing and mutual TLS do not constitute much overhead,

presenting no more than 3.

6.3 Latency, Throughput, and Fault Recovery Metrics

Throughput and latency are studied at different workloads

and configuration of tenants. The scaling in the horizontal

dimension enhances the performance on its throughput to

more than 2,000 requests per second in the case of high-

concurrency scenarios, on an average of 700 requests per

second. The delay of cold start of new pods of the new

agents does not exceed five seconds as a result of the image

preloading and strategy of node pool warm-up. Fault

recovery can be checked simulating the pod failure and

ensuring that it works automatically and redistributes the

traffic across the service mesh. It takes the system an

average of 10 seconds to restore its full-service availability.

The avoidance of cascading failures and meeting SLA

compliance in case of faults is made possible by the

deployment of the pattern of circuit breaker (Gadde, 2021)
[4].

Fig 3: Reinforcement learning-based autoscaling reduces SLA

breaches by 83% compared to threshold-based approaches (Source:

Gadde, 2023).

6.4 Resource Efficiency and Cost Analysis

The utilization is done on the basis of CPU, memory, and

storage usage on tenants. Using reinforcement learning-

based autoscaling, on average, the usage of CPUs is 18

percent lower than that of one using static scaling, and 12

percent less memory is used. Cost analysis is done on cost

estimation software available at OCI and the cost difference

when different types of deployment configurations are used.

The benefits of multi-tenant deployments using shared OKE

clusters with isolated namespaces translated to a 27% cost

saving compared to the fully isolated and completely

separate set ups on a cluster-per-tenant basis. Optimal

utilisation of Terraform and componentised architecture will

lead to an accelerated and improvised provisioning as well

as a reduction in unused resources, which will add to total

efficiency of operations.

Table 4: Latency and Throughput Under Load Scenarios

Load Scenario
Avg Latency

(ms)

Max Throughput

(RPS)

Error

Rate (%)

Normal Load 180 850 0.1

High Load (w/

Scaling)
320 2100 0.2

High Load (No

Scaling)
870 720 5.6

Fault Injection 400 1480 1.8

6.5 Security Compliance Verification

OCI Cloud Guard and manual policy-based audits are used

to determine the level of compliance with security. All agent

pods are assured of running in sandboxed environments

where there are no elevated permissions. The federation of

identities and RBAC policies is exercised among the tenants

to ensure that no one can access another tenant maliciously.

Table 5: OCI Cost Comparison for Tenant Deployment Models

Deployment

Model

Monthly Cost

Estimate

(USD)

Avg CPU

Usage

(%)

Avg

Memory

Usage (%)

Number of

Clusters

Dedicated

Clusters
12,500 45.3 38.7 4

Shared OKE

Clusters
9,150 68.1 61.2 1

Serverless

Functions
13,800 51.6 34.5 N/A

Access logs will validate that data retrieval operations are

limited to storage buckets specific to a tenant, and

encryption key encryption is limited using OCI Vault

policies. Vulnerability scanning reports depict no possible

vulnerabilities in container images issued in production.

Such validations prove that the framework is aligned with

industry security regulations, such as the enterprise security

standards that are applicable in SOC 2 and ISO 27001

(Gadde, 2020) [3].

6.6 Limitations of the Proposed Framework

Fig 4: Cost distribution across deployment models showing 27%

savings with shared OKE clusters (Source: Lee, 2021) [12]

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

273

Table 6: Security and Compliance Verification Results

Control Category
Compliance

Check Passed
Comments

IAM Compartment

Policies
Yes

Scoped to tenant

resources only

OCI Vault Key

Rotation
Yes Scheduled every 90 days

Kubernetes RBAC Yes
RoleBindings enforced

per namespace

Container

Vulnerability
Yes

Zero high/critical CVEs

in image scan

Network

Segmentation
Yes

VCN subnet isolation

confirmed

Although the architecture discussed proves effective in

terms of performance and security when used in controlled

settings, there are a few demerits associated with this

proposed architecture. The models of reinforcement learning

are also periodically retrained and possible operational

overhead may be introduced by it because of changing

workloads.

Stateful agents have their uses, although they come with a

twist in terms of failover, or scaling especially with the use

of persistent volumes. It would complicate portability to

different cloud providers because it depends on OCI-specific

services. Moreover, elevated versions of the service mesh

also involve a learning curve because service mesh can only

be managed by familiarizing with distributed systems and

network policy. Over time, improvements to the framework

may pertain to these limitations by integrating cross-cloud

compatibility layers and easy to deploy service mesh

templates.

7. Discussion

7.1 Interpretations and Practical Implications

The findings of the present paper show that agent-based AI

application on OCI can be successfully deployed in the

multi-tenant setting and that it provides operational

advantages. The architectural choices include the namespace

isolation, service mesh integration, and policy-based scaling,

which makes the infrastructure a trade-off between

scalability and security. In practice, the configuration of AI-

driven functionalities can be executed quicker by enterprises

that strive to preserve the simplicity of infrastructure

without the need to duplicate too many assets or breach

organizational policies. The benefits of modularity and

lifecycle automation are enjoyed by developers, and the

controls about cost, observability, and access management

are finer grained to the satisfaction of platform

administrators (Gadde, 2019) [2].

7.2 Design Trade-offs in Real-world OCI Environments

Regardless of its strength, the framework brings about

design trade-offs that has to be taken into consideration in

production settings. The major task is to balance sharing the

resources and isolation. Whereas shared OKE clusters

provide economies of scale, complexity in configuration and

management of network policies, quotas and access controls

is also ramped up. Stateful agents also have to persist state

and maintain session continuity which introduces latency

and resiliency requirements that stateless deployment do not

have. Finally, the service mesh controls have to be well-

configured, lest the performance suffers as a consequence of

unnecessary proxying or policy enforcement processing

overhead. Although effective, reinforcement learning

requires the initial investment to build related infrastructure

and monitoring pipelines.

7.3 Comparison with Related Architectures

The proposed AaaS framework offers significant

enhancements to modularity, observability, and control as

compared to the traditional monolithic AI systems, which

can be hosted on serverless platforms or virtual machines.

Unlike serverless models where orchestration is abstracted

but there is little flexibility in scaling behavior, container-

based agents have deeper connections to infrastructure and

runtime environments.

Because OKE is built on a Kubernetes platform, native

integrations with OCI services such as network policies,

IAM, and Observability can also be leveraged, which in

general occur to be lacking in the third-party solutions. In

comparison with single-tenant architectures, the multi-tenant

design will reduce redundancy and enhance cost-efficiency,

yet have solid security guarantees since it promotes

compartmentalization and policy enforcement (Kodakandla,

2022) [10].

Fig 5: System performance under different load conditions

showing 3x throughput improvement with scaling enabled (Source:

Golightly et al., 2022) [7]

7.4 Applicability Across Industries and Use Cases

The introduced architecture can be widely applied to the

various industries where AI-driven decision systems are

implemented in parallel and in isolated contexts. As an

example, in financial services, a number of risk assessment

agents can run on separate portfolios or departments.

Privacy-sensitive diagnostic agents can be implemented per

institution and share the infrastructure. Telecommunications

and customer care systems commonly use conversational

agents and recommendation systems, which have been built

in multi-tenant AaaS models, guaranteeing that every

customer maintains his or her logical environment without

needing standalone clusters. Beyond that, the framework can

also be used for research institutions and SaaS providers to

create on-demand AI working environments, which can

make them more productive and avoid sprawling of

infrastructure. With flexibility and expandability of the

architecture being complementary, the architecture can be

applied to diverse domains of operation.

8. Conclusion

8.1 Summary of Contributions

This paper has presented a holistic and technically sound

agent framework of deploying scalable, secure and tenant-

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

274

sensitive AI agents on the Oracle Cloud Infrastructure using

Agent-as-a-Service approach. It provided architectural

principles, design patterns, and implementation strategies

that integrate with the best current architectural notions of

cloud-native and AI systems. The framework will use OCI

native features such as Kubernetes orchestration, identity

management, and observability tools to build a formidable

platform that can be used to support various operations in

different tenants using minimal overheads and high media

performance without crippling operations.

8.2 Key Findings and Innovations

Important observations and insights of the study include that

multi-tenant AaaS framework can dramatically lower the

cost of infrastructure without jeopardizing performance and

security objectives. The reinforcement learning and/\or

autoscaling aspect of the integration allows intelligent

resources optimization, whereas the tenant isolation is tight

by means of its namespace-level policies. Its innovations

incorporate the combination of service mesh policies and

execution based on events, decentralized IAM governance,

and automated CI/CD pipelines adapted to managing agents.

These developments come together to form a blueprint of

production-ready AI deployments on OCI at a large

enterprise.

8.3 Recommendations for System Architects

The three design choices that an AaaS architect on OCI

should consider to make early include defining tenancy

boundaries, resources governance, and automating through

CI/CD. Using Kubernetes namespaces and OCI

compartments, it is proposed to modularize agents with

regard to functional scope and isolate them. Care must be

taken when tuning a service mesh, setting resource quotas,

and instrumenting observability. There should be the

progressive incorporation of reinforcement learning in the

situations where it is applicable to address dynamic scaling,

and a failure recovery mechanism should exist. Designing

into future extensibility by contemplating hybrid or multi-

cloud architecture, open and integrative on the one hand,

and security controls, performance benchmarks, on the

other, must not be sacrificed by architects.

8.4 Directions for Future Research

This study can be further developed in many ways. An area

to consider is to look at cross-cloud federation of agents

using cross interconnect to other providers with OCI.

Another is to use more developed AI lifecycle governance

practices in terms of bias detection, explainability and

compliance auditing. To a greater extent, the use of large

language models (LLMs) in the framework of AaaS should

also be explored with the focus on the management of

memory and the cost optimization.

It is also possible to explore the use of multi-agent

coordination protocols and couple them with federated

learning workflows in order to achieve novel patterns of

collaborative intelligence in distributed AI systems. Such

guidelines are offered to increase the versatility and

resilience of the framework in more and more regulated and

complex digital environments.

9. References

1. Anbalagan K. AI in cloud computing: Enhancing

services and performance. International Journal of

Computer Engineering and Technology (IJCET). 2024;

15(4):622-635. Doi:

https://doi.org/10.5281/zenodo.13353681

2. Gadde H. Integrating AI with graph databases for

complex relationship analysis. International Journal of

Advanced Engineering Technologies and Innovations.

2019; 1(2):294-314.

https://ijaeti.com/index.php/Journal/article/view/640

3. Gadde H. Improving data reliability with AI-based fault

tolerance in distributed databases. International Journal

of Advanced Engineering Technologies and

Innovations. 2020; 1(2):183-207.

https://ijaeti.com/index.php/Journal/article/view/637

4. Gadde H. AI-driven predictive maintenance in

relational database systems. International Journal of

Machine Learning Research in Cybersecurity and

Artificial Intelligence. 2021; 12(1):386-409.

http://ijmlrcai.com/index.php/Journal/article/view/177

5. Gadde H. Leveraging AI for scalable query processing

in big data environments. International Journal of

Advanced Engineering Technologies and Innovations.

2023; 1(2):435-465.

https://ijaeti.com/index.php/Journal/article/view/600

6. Gadde H. Self-healing databases: AI techniques for

automated system recovery. International Journal of

Advanced Engineering Technologies and Innovations.

2023; 1(2):517-549.

https://ijaeti.com/index.php/Journal/article/view/641

7. Golightly L, Chang V, Xu QA, Gao X, Liu BSC.

Adoption of cloud computing as innovation in the

organization. Management Dynamics in the Knowledge

Economy. 2022; 10(3):367-388. Doi:

https://doi.org/10.1177/18479790221093992

8. Kambala NG. Security implications of cloud-based

enterprise applications: An in-depth review. World

Journal of Advanced Research and Reviews. 2023;

19(3):1663-1676. Doi:

https://doi.org/10.30574/wjarr.2023.19.3.1698

9. Kapuruge M, Colman A, Han J. Achieving multi-

tenanted business processes in SaaS applications. In

Web Information System Engineering - WISE 2011.

Lecture Notes in Computer Science, vol 6997. Springer,

Berlin, Heidelberg. 2011, 143-157. Doi:

https://doi.org/10.1007/978-3-642-24434-6_11

10. Kodakandla NN. Federated learning in cloud

environments: Enhancing data privacy and AI model

training across distributed systems. International

Journal of Science and Research Archive. 2022;

5(2):347-356. Doi:

https://doi.org/10.30574/ijsra.2022.5.2.0059

11. Kodakandla NN. IPv4 vs. IPv6 in cloud engineering:

Performance, security and cost analysis. International

Journal of Science and Research Archive. 2023;

8(2):774-784. Doi:

https://doi.org/10.30574/ijsra.2023.8.2.0260

12. Lee I. Pricing and profit management models for SaaS

providers and IaaS providers. Journal of Theoretical and

Applied Electronic Commerce Research. 2021;

16(4):859-873. Doi:

https://doi.org/10.3390/jtaer16040049

13. Mekala MR. AI-driven optimization for multi-tenant

cloud platforms: Balancing cost, performance, and

security. International Journal of Computer Engineering

and Technology (IJCET). 2025; 16(1):1381-1400. Doi:

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

275

https://doi.org/10.34218/IJCET_16_01_104

14. Nagelli A, Kumar R. Harnessing semi-supervised

machine learning for enhanced medical diagnosis

support. Journal of Advances and Scholarly Researches

in Allied Education. 2023; 20(4):587-591.

https://ignited.in/index.php/jasrae/article/view/14693

15. Nagelli A, Shekar C. Big data-driven global

optimization in complex systems. International Journal

of Scientific Research in Science and Technology.

2016; 2(4). Doi:

https://doi.org/10.32628/IJSRST16241012

16. Sharma RK. Multi-tenant architectures in modern cloud

computing: A technical deep dive. International Journal

of Scientific Research in Computer Science,

Engineering and Information Technology. 2025;

11(1):307-317. Doi:

https://doi.org/10.32628/CSEIT25111236

17. Van Der Vlist F, Helmond A, Ferrari F. Big AI: Cloud

infrastructure dependence and the industrialisation of

artificial intelligence. Big Data & Society. 2024; 11(1).

Doi: https://doi.org/10.1177/20539517241232630

http://www.multiresearchjournal.com/

