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Abstract

This paper explores scalable design patterns and 

architectural strategies for deploying multi-tenant AI 

applications on Oracle Cloud Infrastructure (OCI) using an 

Agent-as-a-Service (AaaS) framework. It evaluates 

containerized and event-driven agent deployments, enforces 

multi-tenant isolation, and leverages reinforcement learning 

for dynamic autoscaling. The research identifies key 

architectural primitives and offers secure, reproducible 

implementation patterns aligned with OCI's native services, 

including Kubernetes (OKE), Terraform, IAM, and 

Observability. The proposed model enhances cost-

efficiency, security, and lifecycle automation in AI 

microservices. 
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1. Introduction 

1.1 Background on AI Workloads and Multi-Tenancy 

▪ Explosion of agent-based AI applications: LLM-powered chatbots, autonomous agents, and analytics engines.  

▪ Multi-tenancy in cloud computing allows multiple clients to share infrastructure with logical/physical isolation. 

 

1.2 Motivation for Agent-as-a-Service Architectures 

▪ Need for scalable, reproducible, and secure AI workloads.  

▪ Transition from monolithic AI APIs to modular, containerized agents offering task-specific services. 

 

1.3 Objectives of the Study 

▪ Design and evaluate a scalable and secure AaaS framework on OCI.  

▪ Identify reusable design patterns for multi-tenant AI microservices. 

 

1.4 Scope and Limitations 

▪ Focus on OCI-native tools: OKE, IAM, Object Storage, Observability.  

▪ Reinforcement learning used only for autoscaling—not policy optimization or behavior modeling. 

 

2. Theoretical Foundations and Literature Review 

2.1 Evolution of Multi-Tenant Architectures in Cloud Environments 

The idea of multi-tenancy has greatly diversified since the beginning when it was merely simple partitioning of virtual 

machines to the much more advanced and modern aspects of service oriented and policy enforcement-based models. With 

cloudnative modern architecture, isolation between tenants appears at multiple levels of the stack (network, identity, 

application) and enables multiple distinct tenants to consume their shared infrastructure concurrently and in a secure and 

otherwise governance-bound manner. The methodology has gained essentiality in the application of AI and ML in cases that 

contain data-heavy and volatile workloads. Multi-tenancy is becoming a default feature provided by SaaS cloud service 

providers, typically using container and orchestration platforms and software-defined networking configurations. In 
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Kubernetes, namespaces are also regularized and applied to 

tenants, in conjunction with network policies and admission 

controllers. In a cloud-native workload, the multi-tenancy 

model is increasingly based on identity-based access 

control, adaptation, and enforcement of policies particularly 

associated with fine-grained resource quotas. The paradigm 

being used in 2025 is the basis of providing AI solutions at 

scale to different client teams in the one but secure 

partitioned system. The development is also in line with the 

necessity of the adherence to regulatory frameworks like 

GDPR, HIPAA, and PCI-DSS that require tenant-level data 

isolation and control (Mekala, 2025) [13]. 

 

2.2 Scope and Limitations 

The cluster networking of OCI, with the Remote Direct 

Memory Access (RDMA) using converged Ethernet (RoCE) 

protocol, supports up to 100 Gbps of bandwidth between the 

compute nodes which will enable training and scaling large 

models in AI. The Oracle Kubernetes engine (OKE) 

facilitates autoscaling by an AI agent of several node pools, 

includes identity policies and OCI IAM that is used to 

enforce least-privilege accessibility. Other services like OCI 

Data Science, Object Storage using customer managed 

encryption keys (CMEK), and the Resource Manager 

(Terraform-as-a-Service) builds upon the capabilities of the 

programmability and security posture of multi-tenant 

deployment. OCI also sits in hybrid and regulated cloud 

marketplace making it even more relevant to enterprise-level 

hosting of AI agents where compliance, data locations, SLA 

are paramount. 

 

 
 

Fig 1: Enable secure and scalable self-service platforms for 

generative AI and LLMs within OCI (Oracle, 2024) 

 

2.3 Agent-Based AI Systems: Definition and Architectural 

Taxonomy  

The agent-based AI systems constitute autonomous or semi-

autonomous software, which, by perceiving or thinking 

about its environment, make decisions and then take actions 

based on the decisions to the achievement of pre-determined 

goal. These agents may be as simple as a set of rules to more 

complicated reinforcement learning based agents which can 

plan in the long horizon. The pattern applicable in cloud-

native scenarios is the Agent-as-a-Service (AaaS) pattern 

described as a model of deployment where AI agents can be 

encapsulated as separate microservices, which have APIs or 

event-driven interfaces to interact with. Architecturally, 

agents can be considered as reactive or deliberative agents, 

the former are not equipped to internal state modeling of 

stimuli whereas the latter possess internal state modeling, 

memory and plans. OCI may also have multi-agent systems 

(MAS) that have hierarchical use of agents with supervisory 

agents coordinating the activities of subsumptive agents. 

These are the architectural differences that affect the 

deployment, scaling, and securing agents. Stateless agents 

will lend themselves better to (horizontal) scaling but might 

need to have a mechanism to handle a long (long) term 

memory or state (such as Redis or Object Storage) available 

with some persistence. Taxonomy of agent-based systems 

has a direct effect on the resource allocation, lifecycle 

automation and fault tolerance that is vital in multi-tenant 

environment where performance susceptibility has to be 

closely regulated (Anbalagan, 2024) [1]. 

 

2.4 Design Patterns in Scalable AI System Engineering 

Design of scalable AI systems using proven cloud-native 

design patterns are extended to the intelligent, and 

frequently compute-intensive workloads. Among them are 

the sidecar pattern to inject observability and policy controls 

into agent containers or the circuit breaker pattern to manage 

degraded downstream services or the bulkhead pattern to 

sandbox failures between tenants. These patterns can enable 

elastic scaling and high availability with no costs on 

performance isolation of tenants when applied to AaaS 

models. Along with microservice decomposition, 

containerization makes agents independently scalable, 

versioned and updated, helping to implement CI/CD 

pipelines adapted to AI workflow. Typical autoscaling that 

is done based on the utilization of CPU or memory has been 

transformed to incorporate the reinforcement learning 

models, which preset the load spikes and allocate the 

capacity in advance. Furthermore, service mesh, like Istio or 

Linkerd, becomes a more common way to manage the east-

west traffic between agents and implement the application-

level enforcement of mTLS-based encryption and policies. 

This integration with the service mesh control planes 

enables zero-trust architectures, required in the multi-tenant 

environment AaaS. Also, with Terraform or Helm based 

pattern-based infrastructure templates, it is possible to do 

repeatable deployments, which speeds up the onboarding of 

new tenants and environment teardown. By 2025, the 

prominent cloud providers and open-source communities are 

gearing up to codify these design patterns into blueprints of 

cloud-native AI architecture (van der Vlist, Helmond, & 

Ferrari, 2024) [17]. 

 

2.5 Security and Compliance in Multi-Tenant Cloud 

Systems 

Data security is the utmost concern of multi-tenant AI 

platforms especially when the tenants might be working in 

regulated markets or dealing with sensitive information. 

OCI manages this need to holistically carry out 

infrastructure-based isolation, fine-grained IAM, and 

encryption strategies that complement zero-trust ideals. 

With resource-scoped access through the conditions like IP 

ranges, identity domains, or workload tagging, tenants are 

logically isolated through the use of compartments and 

policies defined in OCI IAM. The transfer of data is secured 

through TLS 1.3 and data at rest is kept through AES-256 

with customer-managed key options. Side-channel attacks, 

container escape possibilities are other issues that must be 

considered in multi-tenant deployments; OCI addresses 

these with kernel-hardening, strong container isolation rules, 

and secure enclave support of higher sensitive workloads 
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computation. On the compliance side, OCI is certified with 

very broad arrays of standards, such as SOC 2, ISO 27001, 

and FedRAMP High. When security logging is centralized 

based on OCI Logging and Audit service, real-time 

monitoring of access patterns in the tenant is now possible, 

anomaly detection, and policy violations. Such combination 

allows ensuring that artificial intelligence agents distributed 

in a multi-tenant architecture are secure, auditable, and 

conformant to dynamically changing laws and regulations 

around the world (Sharma, 2025) [16]. 

 

2.6 Reinforcement Learning in AI Agent Lifecycle 

Management  

Reinforcement learning (RL) is a radical change in the 

lifecycle management of AI agents particularly in those 

situations which demand adaptive scaling, performance 

tuning or optimized behavior. With multi-tenant AaaS 

platforms, RL can be used to learn how resource 

provisioning strategies should be modified on a dynamic 

basis, possibly due to past usage pattern, or estimated tenant 

growth, or priorities. As an example, Proximal Policy 

Optimization (PPO) and Advantage Actor-Critic (A2C) can 

also be found in cloud controllers where they learn optimal 

scaling policies in light of constraints, which include budget, 

energy consumption constraints and latency SLAs. Such RL 

agents on OCI can be trained using OCI Data Science 

notebooks and deployed using OKE custom containers and 

observed using the OCI Observability stack. Not only can 

the agent lifecycle of an initialization, warm start, training, 

inference, and decommissioning be orchestrated, but also 

with event-driven mechanisms (such as OCI Events and 

Functions). Performance Anomaly detection can also be 

performed automatically by RL which is applicable in 

performing corrective behaviour like restarting improperly 

behaved agents or modifying the concurrency throttles. The 

most important development is that in 2025, distributed RL 

frameworks will integrate with Kubernetes native 

scheduling enabling dynamic resource scheduling based on 

learned policies. This not only allows an AI platform to 

scale horizontally but also to do so in a data-driven and 

workload-aware context, enhancing efficiency and user 

experience on shared and multi-tenant overlay. 

 

2.7 Emerging Trends in AI DevOps and Federated 

Governance 

The emergence of AI DevOps has tilted the paradigm to the 

ability of continuous delivery of intelligent agents as 

compared to conventional ML pipelines. This recurring is 

creating new versioning, governance and reproducibility 

fashions. Such issues as version conflicts, dependency-drift, 

and security misconfigurations, might attack versions 

deployed in downstream tenants in a multi-tenant AI 

admiralty unless controlled. Containers abstractions and 

container images Containers are increasingly managed using 

tools like OCI DevOps, GitOps pipelines using ArgoCD, 

and OCI Artifacts repositories. Federated management, 

where various personnel or business departments develop 

operational control of their agents but in accordance with 

centralized policy architecture has become a necessity. OCI 

facilitates the same through IAM domains, hierarchical 

policy inheritance, as well as custom tagging that permit 

creating governance scopes without losing agility. The Open 

Policy Agent (OPA) is an example of policy-as-code (PaC) 

that is currently integrated into AI DevOps processes, in 

which all deployment artifacts have to be compliant with the 

prerequisite rules. There is also the emerging prominent 

metadata management on ML which provides solutions 

against lineage tracking, drift detection, and explainability 

metadata that allow auditability. Due to the increased 

complexity of AI systems, the model monitoring practice 

became an OCI first class citizen, which is possible in 

CI/CD with OCI being integrated with Prometheus, Grafana, 

and Alert policies (Golightly, Chang, Xu, Gao, & Liu, 2022) 
[7]. 

 

3. Architectural Framework  

3.1 Overview of Agent-as-a-Service on OCI 

The introduction of the Agent-as-a-Service (AaaS) paradigm 

presents the possibility of a modular deployment model in 

which each of the AI agents functions as the autonomously 

scalable microservice. In Oracle Cloud Infrastructure (OCI), 

the architecture model is highly enabled by a cloud-native 

stack that is flexible, yet supplies performance and 

governance on the scale. The AaaS design is assembled on 

containerized agents provided on the Oracle Kubernetes 

Engine (OKE), orchestrated in a central way, tracked and 

controlled identities. Agents are AI components that can be 

stateless or stateful and are available via APIs or event 

triggers, and have the capabilities to serve user interactions 

or backend computations independently. Both OCI-adorning 

and OCI-native services, e.g., OCI functions, OCI API 

gateway, and OCI IAM can be aligned. This way developers 

can create an entirely integrated, and enterprise-grade multi-

tenant system. The architecture utilizes native OCI 

networking and security policy as well as autoscaling 

functions so that agents can be streamlined across various 

tenant environments without overloading performance or 

data-isolating facilities (Lee, 2021) [12]. 

 

3.2 Multi-Tenant AI Service Layers  

The architecture uses logic layers to segment itself and 

encapsulate multi-tenancy, secure, and scale. The baseline 

level encompasses compute and networking capacities built 

with virtual networks on clouds, subnets, and security lists. 

One layer is the platform layer that includes orchestrators, 

identity providers, and control-plane services that are used 

to both provision and scale agents. The application layer has 

the AI agents themselves, all in their own namespace or 

compartment. 

 
Table 1: OCI Resource Allocation Across Tenants 

 

Tenant ID Namespace 

CPU 

Limit 

(vCPU) 

Memory 

Limit 

(GB) 

Storage 

Quota 

(GB) 

Network 

Bandwidth 

(Gbps) 

Tenant-A ns-tenant-a 16 64 500 10 

Tenant-B ns-tenant-b 8 32 250 5 

Tenant-C ns-tenant-c 12 48 400 8 

Tenant-D ns-tenant-d 20 80 800 12 

 

The isolation between the tenants in the OCI-based AaaS 

systems is provided by a pairing of constructions used in the 

Kubernetes cluster, the IAM compartment policies, and the 

construction of OCI tenancies. A separate compartment 

containing a specific tenant is assigned to each on a scoped 

access to compute and storage resources and monitoring. 

Network-level isolation is implemented with the help of a 

dedicated virtual cloud networks and the security lists in 

order to avoid lateral movement within the tenants’ 
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environments. In multi-agent systems, Kubernetes Network 

Policies limit pod-to-pod communication to a tenant-scoped 

region.  

These isolation techniques will make sure that a failure or 

compromise in the work of one tenant does not leak across 

others, and maintains both the security and the quality of 

service. Namespaces provide a logical unit of workload 

isolation in OKE cluster allowing multi-tenant agents to 

coexist in the same cluster but with separation of resource 

consumption, policy enforcement, and visibility. By proxy 

of limiting available resources, resource quotas both are set 

at the namespace level so as to limit CPU, memory, and 

storage usage and consecrate noisy neighbor concerns. Java 

applications are a good example of applications scoped to a 

namespace, and Java applications could be configured to use 

namespace scoped Config Maps, Secrets, and Persistent 

Volume Claims to store secrets and tenant specific 

configurations. At this level of granularity, the architecture 

not only fosters modularity, fault confinement, and 

governance within a multi-tenant environment comprised of 

agent ecosystems, but also the safe encapsulation of 

resources (Kapuruge, Colman, & Han, 2011) [9]. 

 

 
 

Fig 2: Resource allocation profiles across tenants showing CPU, 

memory, and storage distribution. Tenant-D requires highest 

resource allocation (Source: Mekala, 2025) [13]. 

 

3.3 Service Mesh and Inter-Agent Communication  

An east-west communication between individual AI agents 

in the infrastructure is serviced using a service mesh. 

Lightweight service mesh like Istio is incorporated into 

OKE in this architecture to facilitate observable, policy-

enforced, and secure service-to-service communication. 

Every AI agent is also deployed using a sidecar proxy which 

enables both TLS encryption (mutual with one another), rate 

limiting, retry policies, and services to be discovered. The 

mesh separates service logic and network management, and 

allows developers to concentrate on agent behavior, and 

leaves traffic routing and policy enforcement to the mesh. 

As well, mesh telemetry information is useful in monitoring 

as well as pinpointing performance bottlenecks or even 

failure points. 

 

3.4 Policy-Driven Scaling Models 

The architecture has the policy-aware autoscaling 

techniques in the architecture which determine dynamic 

alteration of agent capacity in line with the measurements of 

the workload. HPAs and custom metrics are set up along 

with OCI Monitoring to signal the scaling events. In more 

complex cases, reinforcement learning is employed to 

forecast resource requirements and thereby optimize scaling 

behavior relying on past trends. These scaling policies will 

be tenant-conscious and scoped to namespace-level 

thresholds to be able to have fine-grained control over how 

and when an agent scales. It is used to guarantee the best use 

of the resources and responsive provision of services based 

on the load or how unstable it is. 

 

3.5 Container Orchestration & OCI K8s Engine (OKE) 

Integration  

OKE is used to manage containerized agents on the 

infrastructure with its use as the primary orchestration layer. 

OKE clusters are given the configuration of node pools that 

match tenant groups within the cluster with taints and 

tolerations that guarantee that the scheduling of the agents is 

done on specific nodes. OCI also makes it easy to autoscale 

pods and node pools, which can then scale according to 

current adoption requirements. Further enhancing the 

security by providing the means that limit access even to the 

secrets and the runtime configurations at once, one can 

combine OKE with OCI IAM and OCI Vault. Helm charts 

are used to achieve reproducibility in their deployment 

pipelines and OCI DevOps is used to automate the 

continuous delivery of the agent images and configurations 

(Kodakandla, 2023) [11]. 

 

3.6 Data Security and Confidentiality by Design 

The architectural framework is designed to support security 

by having it incorporated at every stage of the structure so 

that data can have confidentiality, integrity, and availability. 

All the agents read encrypted data sources through API calls 

(authenticated via IAM), and keys are kept by OCI Vault. 

The TLS 1.3 is used to secure network communications and 

encryption-at-rest is implemented in all persistent storage 

back ends. Least-privilege IAM policies and contextual 

criteria (e.g. an IP range, so-called identity tags) can be 

enforced to enforce access control. OCI Logging centralizes 

the audit logs and pipes them to OCI Logging Analytics to 

find anomalies. When combined, the controls form a zero-

trust baseline of secure multi-tenant AI agent deployment. 

 

4. Design Patterns for Agent-as-a-Service  

4.1 Stateless vs. Stateful Agent Deployment Models 

Stateless agents are also constructed without the memory of 

previous transactions, which makes them one which has a 

lot of scale and can be treated in a manner that is parallel 

processing across distributed infrastructure. Such agents can 

be easily cloned and destroyed depending on the demand 

without the loss of functioning.  

Conversely, stateful agents have maintained state between 

sessions, and thus need to be run with persistent storage or 

volumes backed by memory. AaaS framework will embrace 

both models where stateful agents will undergo a 

Deployment controller standard, whereas stateless agents 

can utilize the StatefulSet provision in Kubernetes. This 

partitioning allows the platform to provide conversational 

agents, both real time and long-running planning or 

monitoring services, as appropriate in the application 

scenario (Kodakandla, 2022) [10]. 
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4.2 Event-Driven and Asynchronous Agent Execution 

With event-driven execution, the agents can react to a 

particular trigger, e.g. to a message queue, or to an object 

storage upload, or to an API request. OCI Events and 

Functions are used to invoke operations asynchronously and 

make some processing of tasks non-blocking and scalable. 

The execution of the agents could be adhered through 

webhook calls, OCI Notifications or by the thrown internal 

events by other agents. This design reduces inefficient use 

of compute, and can support just-in-time scaling. It is also 

where its ability to chain the services of agents comes in 

whereby the output of one agent is used as the input of 

another agent to enable multilevel decision pipelines and 

automation of tasks in multi-tenant systems. 

 
Table 2: Agent Deployment Models and Characteristics 

 

Agent Type Stateful/Stateless Use Case Example Storage Dependency Deployment Strategy Intent Router 

Intent Router Stateless Message classification agent None Horizontal Deployment (HPA) 

Session Tracker Stateful Long conversation handler PVC or Redis StatefulSet with Volumes 

Image Annotator Stateless Vision inference engine Optional (cache) Deployment with Pod Autoscale 

Diagnostic Engine Stateful Health risk prediction agent Persistent Storage StatefulSet with Affinity 

 

4.3 API Gateway Patterns for AI Agent Invocation 

OCI API Gateway can be used to unify the invocation of AI 

agents, apply authentication, rate limits, and paths. Agents 

all have a dedicated endpoint, and routes that are mapped to 

services in respective tenant namespaces. API Gateway 

level policies can also be established to make sure that only 

authorized requests are applied against underlying agents 

which guard against the abuse of these APIs or unwanted 

access. The gateway allows the transformation of requests 

and injection of the client header, so that the clients may 

pass in contextual ID or session tokens. With this 

centralized access pattern, it is easier to integrate with front-

end applications or with other external systems. 

 

4.4 Multi-Tenant Identity Federation and RBAC 

Enforcement 

The federation of identities enables tenants to log in using 

their identities maintained through identity providers when 

using shared infrastructure on OCI. The architecture 

incorporates OCI IAM and a third-party provider of identity 

by using SAML or OAuth2. To limit what users can access, 

Role-Based Access Control (RBAC) is used both at the 

Kubernetes and OCI IAM level to segregate what a user can 

access according to their role, group, and compartment. 

Namespaces-specific roles allow users to work with the 

resources of only their tenants, and granular permissions are 

provided with the help of custom policies, allowing the user 

to interact with agents, secrets, and telemetry. The controls 

have been regulated so that tenants can safely exercise their 

management over their agents without endangering their 

violation of cross-tenant access (Nagelli & Kumar, 2023) 
[14]. 

 

4.5 Horizontal Scaling with Reinforcement Learning-

Driven Policies 

Reinforcement learning models that get trained on the 

workload patterns, resource utilization and agent-specific 

latency are applied to power scaling decisions. The models 

forecast increases in demand and help suggest the optimum 

pods or resources to achieve. The RL-based policies, in 

contrast to the static threshold-based scaling, can adjust to 

both the tenant individual usage patterns and temporal non-

stationarity, like daily or seasonal spikes. The latter are 

implemented as sidecar agents/external controllers that 

configure HPAs in real time. This method minimizes the 

over-provisioning but still attains the service-level goals and 

enhances the all-round efficiency in the use of resources by 

multi-tenants. 

 

4.6 Circuit Breaker and Retry Patterns for Fault Tolerance 

Circuit breaker patterns are applied to service mesh and 

applications in order to improve fault tolerance. In case of 

repeated failures or time outs experienced by an agent, the 

circuit breaker will ensure that no more requests are 

transmitted to it, hence the minimal disruptions on the 

upstream services. Exponential back-off Retry policies are 

employed in order to succeed in handling transient failures 

gracefully. These processes are important in multi-tenant 

controls where the failure by one agent is not supposed to 

impair the entire system. Configuration is done either by 

using service mesh policies or by using custom middleware 

in agent code, depending on the required granularity and 

latency requirements. 

 

4.7 Observability, Logging, and Metrics Propagation 

Observability is implemented as a combination of logging, 

metrics and distributed traces tools. Each agent writes well-

formed logs to OCI Logging, which are annotated with 

metadata per tenant to be filtered and analyzed. The 

exporters monitor the metrics through Prometheus and 

Grafana dashboards are used to display them.  

With the help of OpenTelemetry, distributed tracing is 

possible, and you can get an end-to-end view of the flow of 

requests, involving multiple agents and services. Such 

observability patterns enable operators to identify their 

bottlenecks, track the adherence to SLA, and troubleshoot 

production problems. The multi-tenant offers advantages 

such as tenant-specific dashboards/alert operation so that 

individual groups of teams are monitoring their groups of 

agents, without impacting the other tenant groups (Kambala, 

2023) [8]. 

 

5. Implementation Methodology  

5.1 Infrastructure Provisioning using OCI Terraform 

Modules 

Mode of operation: The whole mode of operation is initiated 

by providing infrastructure by Infrastructure as Code (IaC) 

tools. Terraform is available as native support in OCI, and 

Terraform is used to declaratively describe and create 

compute instances, virtual cloud networks (VCNs), 

Kubernetes clusters, IAM compartments, and object storage 

buckets. The predefined OCI Terraform modules are used to 

maintain consistency and make sure device similarities 

among several environments. These modules hide the 

intricacy of handling the resources dependency and it 

guarantees that all structures are in compliance with the 

security and networking policies of the enterprise. 
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Deployment Workspaces in OCI Resource Manager are 

utilized to control the Terraform runs, and they can be 

version-controlled and audited. With this approach, it is 

possible to minimize manual intervention, implement 

policy- as- code and have the DevOps teams instantiate 

tenant specific environments in a fast and secure way. 

 

5.2 Agent Lifecycle Automation Pipelines 

An AI agent has its lifecycle (development to 

decommissioning) automated by the aid of continuous 

integration and continuous delivery (CI/CD) pipelines. OCI 

DevOps service is being used towards code commit, 

construction of images, preservation of artifactual resources 

and deployment to OCI Kubernetes Engine. Every AI agent 

lives in an individual Git repository with structured 

manifests according to which it is deployed, which 

dependencies it needs at run-time and what configuration 

options it supports. When a commit or a merge is made, the 

pipeline starts new container builds on OCI Container 

Registry, and performs the security scan and vulnerability 

report automatically. Once confirmed, deployment manifests 

are used on target OKE clusters so that deployment is safe 

via blue-green/canary techniques. Not only does this 

automation of the lifecycle increase the speed of 

development but ensures standardized deployment and 

rollback workflows, which are critical to multi-tenant 

systems with their necessity of high uptime and uniformity 

(Nagelli & Shekar, 2016) [15]. 

 

5.3 Reinforcement Learning Environment Setup for 

Autoscaling 

Each agent pool will be implemented with a reinforcement 

learning (RL) environment responsible in order to facilitate 

intelligent and automated autoscaling of agents. That 

environment is constructed on OCI Data Science service, 

where notebooks produced by Jupyter-Notebooks run 

simulations of past telemetry data to train scaling policies. 

The RL agent setup is meant to monitor loading on the CPU, 

use of memory, and throughput within the whole request 

and it responds to a modeled environment which imitates the 

actions of the implemented agents. Actions are increasing an 

existing capacity, reducing capacity or sustaining it, and the 

reward involves trying to meet service-level targets with the 

least use of resources. After training, the RL model is 

containerized and it is run in the form of a background 

service that dynamically scales Horizontal Pod Autoscaler 

(HPA) thresholds with the Kubernetes API. This enables a 

proactive response on the part of the system to workload 

trends not covered by threshold-based policies. 

 

5.4 Deployment of Model Inference Services 

The common specification of AI agents would involve 

making inferences using pre-trained models to undertake 

classification, recommendation, or natural language 

processing. These models are distributed as microservices to 

run with the agents or they can be reached remotely via 

model serving endpoints. During the implementation, the 

TensorFlow serving and ONNX Runtime are employed to 

access the REST and gRPC apis to expose models. To 

reduce latency each model service is deployed as a pod in 

the same namespace as the calling agent and made to co-

locate. The model artifacts are stored in OCI Object Storage 

and agents pull new versions during the deployment. 

Credential provision of the model access is secured through 

OCI Vault and Kubernetes Secrets mounted into the pods at 

run-time. The design is modular and can be scaled, 

versioned and monitored separately without interfering with 

agent logic (Gadde, 2023a). 

 

5.5 Monitoring and Alerting with OCI Observability Stack 

The level or circle of operational visibility plays a 

significant role in the operational system of the multi-tenant 

AI systems. The framework is integrated with OCI 

Observability stack, a set of observability services that 

includes OCI Monitoring, Logging, and Logging Analytics 

provided by OCI to develop end-to-end visibility in terms of 

agents health and performance. Agents are put out to custom 

metrics via Prometheus exporters which are scraped and 

saved to be viewed via Grafana. Logs are sent to stream 

onto OCI Logging, with log groups being configured at a 

tenant or a service type level, to allow specific log analysis 

and alerting. Inference latency, API response times, memory 

usage, and restarts of containers are monitored as real time 

metrics. OCI Alarms can be set to identify the anomalies 

and send a notification through email or through webhooks. 

Such observability features allow SRE teams to recognize 

and remove problems rapidly, before they result in services 

disruptions, offering high availability and performance. 

 

5.6 Securing the Control Plane and Data Plane 

Both the data plane and control plane security are imposed. 

Security in control plane There is a certain emphasis on 

limiting access to infrastructure elements like the 

Kubernetes API servers, terraform modules, CI/CD 

pipelines, etc. It is implemented with the help of OCI IAM 

policies, the isolation of compartments, and network 

security groups. Administrative operations are highly scoped 

and monitored via the use of audit logs. Data plane security 

also assures that agent-to-agent communication, data access, 

and inference execution uses a secure medium. Data 

transmitted across the network is encrypted with TLS 1.3, 

data stored on disk is encrypted with OCI-managed keys and 

machine learning models and other user-input data. The 

security of containers is manufacturer in the security 

policies of containers, seccomp profiles, and OCI 

Vulnerability Scanning (Gadde, 2023b). 

 

6. Evaluation and Analysis  

6.1 Experimental Configuration and Benchmarking Tools 

The provided multi-tenant AaaS framework is evaluated on 

a simulated tenant workload in a production-grade OCI 

facility. The lab environment will involve deploying an 

OKE cluster that will have three node pools, which will 

work as tenants. The execution environment comprises a 

combination of stateless and stateful agents that have 

differing computational demands, and replicate real world 

usage patterns, including chatbot interactions, image 

classification and real-time analytics. Apache JMeter, 

Locust, and k6 benchmarking tools are employed to 

simulate load and record responses of a system. 

 

6.2 Performance Evaluation across Multi-Tenant 

Scenarios 

The system shows good throughput and stable response time 

over load of multi-tenant traffic. Stateless agents will scale 

linearly with increased loads whereas stateful agents have 

predictable performance up to a pre-defined limitation of 

memory and CPU.  
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Table 3: Reinforcement Learning vs. Threshold-Based 

Autoscaling Performance 
 

Metric 
Threshold-Based 

Scaling 

RL-Based Scaling Average 

CPU Utilization (%) 

Average CPU 

Utilization (%) 
68.5 58.2 

SLA Breach 

Incidents 
12 2 

Avg Pod Provision 

Time (sec) 
9.5 6.1 

Over-Provisioning 

(%) 
23 8 

 

The average response latency of model inference services 

stays under 200 ms for 95 percent of requests on a regular 

basis and under 500 ms at a peak with autoscaling activated. 

By implementing reinforcement learning-based scaling 

policies, it is possible to achieve faster recovery and 

superior resource allocation compared to the threshold-

based autoscaling scenario. Moreover, service mesh traffic 

routing and mutual TLS do not constitute much overhead, 

presenting no more than 3. 

 

6.3 Latency, Throughput, and Fault Recovery Metrics 

Throughput and latency are studied at different workloads 

and configuration of tenants. The scaling in the horizontal 

dimension enhances the performance on its throughput to 

more than 2,000 requests per second in the case of high-

concurrency scenarios, on an average of 700 requests per 

second. The delay of cold start of new pods of the new 

agents does not exceed five seconds as a result of the image 

preloading and strategy of node pool warm-up. Fault 

recovery can be checked simulating the pod failure and 

ensuring that it works automatically and redistributes the 

traffic across the service mesh. It takes the system an 

average of 10 seconds to restore its full-service availability. 

The avoidance of cascading failures and meeting SLA 

compliance in case of faults is made possible by the 

deployment of the pattern of circuit breaker (Gadde, 2021) 
[4]. 

 

 
 

Fig 3: Reinforcement learning-based autoscaling reduces SLA 

breaches by 83% compared to threshold-based approaches (Source: 

Gadde, 2023). 

 

6.4 Resource Efficiency and Cost Analysis  

The utilization is done on the basis of CPU, memory, and 

storage usage on tenants. Using reinforcement learning-

based autoscaling, on average, the usage of CPUs is 18 

percent lower than that of one using static scaling, and 12 

percent less memory is used. Cost analysis is done on cost 

estimation software available at OCI and the cost difference 

when different types of deployment configurations are used. 

The benefits of multi-tenant deployments using shared OKE 

clusters with isolated namespaces translated to a 27% cost 

saving compared to the fully isolated and completely 

separate set ups on a cluster-per-tenant basis. Optimal 

utilisation of Terraform and componentised architecture will 

lead to an accelerated and improvised provisioning as well 

as a reduction in unused resources, which will add to total 

efficiency of operations. 

 
Table 4: Latency and Throughput Under Load Scenarios 

 

Load Scenario 
Avg Latency 

(ms) 

Max Throughput 

(RPS) 

Error 

Rate (%) 

Normal Load 180 850 0.1 

High Load (w/ 

Scaling) 
320 2100 0.2 

High Load (No 

Scaling) 
870 720 5.6 

Fault Injection 400 1480 1.8 

 

6.5 Security Compliance Verification 

OCI Cloud Guard and manual policy-based audits are used 

to determine the level of compliance with security. All agent 

pods are assured of running in sandboxed environments 

where there are no elevated permissions. The federation of 

identities and RBAC policies is exercised among the tenants 

to ensure that no one can access another tenant maliciously.  

 
Table 5: OCI Cost Comparison for Tenant Deployment Models 

 

Deployment 

Model 

Monthly Cost 

Estimate 

(USD) 

Avg CPU 

Usage 

(%) 

Avg 

Memory 

Usage (%) 

Number of 

Clusters 

Dedicated 

Clusters 
12,500 45.3 38.7 4 

Shared OKE 

Clusters 
9,150 68.1 61.2 1 

Serverless 

Functions 
13,800 51.6 34.5 N/A 

 

Access logs will validate that data retrieval operations are 

limited to storage buckets specific to a tenant, and 

encryption key encryption is limited using OCI Vault 

policies. Vulnerability scanning reports depict no possible 

vulnerabilities in container images issued in production. 

Such validations prove that the framework is aligned with 

industry security regulations, such as the enterprise security 

standards that are applicable in SOC 2 and ISO 27001 

(Gadde, 2020) [3]. 

 

6.6 Limitations of the Proposed Framework 

 

 
 

Fig 4: Cost distribution across deployment models showing 27% 

savings with shared OKE clusters (Source: Lee, 2021) [12] 
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Table 6: Security and Compliance Verification Results 

 

Control Category 
Compliance 

Check Passed 
Comments 

IAM Compartment 

Policies 
Yes 

Scoped to tenant 

resources only 

OCI Vault Key 

Rotation 
Yes Scheduled every 90 days 

Kubernetes RBAC Yes 
RoleBindings enforced 

per namespace 

Container 

Vulnerability 
Yes 

Zero high/critical CVEs 

in image scan 

Network 

Segmentation 
Yes 

VCN subnet isolation 

confirmed 

 

Although the architecture discussed proves effective in 

terms of performance and security when used in controlled 

settings, there are a few demerits associated with this 

proposed architecture. The models of reinforcement learning 

are also periodically retrained and possible operational 

overhead may be introduced by it because of changing 

workloads. 

Stateful agents have their uses, although they come with a 

twist in terms of failover, or scaling especially with the use 

of persistent volumes. It would complicate portability to 

different cloud providers because it depends on OCI-specific 

services. Moreover, elevated versions of the service mesh 

also involve a learning curve because service mesh can only 

be managed by familiarizing with distributed systems and 

network policy. Over time, improvements to the framework 

may pertain to these limitations by integrating cross-cloud 

compatibility layers and easy to deploy service mesh 

templates. 

 

7. Discussion  

7.1 Interpretations and Practical Implications 

The findings of the present paper show that agent-based AI 

application on OCI can be successfully deployed in the 

multi-tenant setting and that it provides operational 

advantages. The architectural choices include the namespace 

isolation, service mesh integration, and policy-based scaling, 

which makes the infrastructure a trade-off between 

scalability and security. In practice, the configuration of AI-

driven functionalities can be executed quicker by enterprises 

that strive to preserve the simplicity of infrastructure 

without the need to duplicate too many assets or breach 

organizational policies. The benefits of modularity and 

lifecycle automation are enjoyed by developers, and the 

controls about cost, observability, and access management 

are finer grained to the satisfaction of platform 

administrators (Gadde, 2019) [2]. 

 

7.2 Design Trade-offs in Real-world OCI Environments 

Regardless of its strength, the framework brings about 

design trade-offs that has to be taken into consideration in 

production settings. The major task is to balance sharing the 

resources and isolation. Whereas shared OKE clusters 

provide economies of scale, complexity in configuration and 

management of network policies, quotas and access controls 

is also ramped up. Stateful agents also have to persist state 

and maintain session continuity which introduces latency 

and resiliency requirements that stateless deployment do not 

have. Finally, the service mesh controls have to be well-

configured, lest the performance suffers as a consequence of 

unnecessary proxying or policy enforcement processing 

overhead. Although effective, reinforcement learning 

requires the initial investment to build related infrastructure 

and monitoring pipelines. 

 

7.3 Comparison with Related Architectures 

The proposed AaaS framework offers significant 

enhancements to modularity, observability, and control as 

compared to the traditional monolithic AI systems, which 

can be hosted on serverless platforms or virtual machines. 

Unlike serverless models where orchestration is abstracted 

but there is little flexibility in scaling behavior, container-

based agents have deeper connections to infrastructure and 

runtime environments. 

Because OKE is built on a Kubernetes platform, native 

integrations with OCI services such as network policies, 

IAM, and Observability can also be leveraged, which in 

general occur to be lacking in the third-party solutions. In 

comparison with single-tenant architectures, the multi-tenant 

design will reduce redundancy and enhance cost-efficiency, 

yet have solid security guarantees since it promotes 

compartmentalization and policy enforcement (Kodakandla, 

2022) [10]. 

 

 
 

Fig 5: System performance under different load conditions 

showing 3x throughput improvement with scaling enabled (Source: 

Golightly et al., 2022) [7] 

 

7.4 Applicability Across Industries and Use Cases 

The introduced architecture can be widely applied to the 

various industries where AI-driven decision systems are 

implemented in parallel and in isolated contexts. As an 

example, in financial services, a number of risk assessment 

agents can run on separate portfolios or departments. 

Privacy-sensitive diagnostic agents can be implemented per 

institution and share the infrastructure. Telecommunications 

and customer care systems commonly use conversational 

agents and recommendation systems, which have been built 

in multi-tenant AaaS models, guaranteeing that every 

customer maintains his or her logical environment without 

needing standalone clusters. Beyond that, the framework can 

also be used for research institutions and SaaS providers to 

create on-demand AI working environments, which can 

make them more productive and avoid sprawling of 

infrastructure. With flexibility and expandability of the 

architecture being complementary, the architecture can be 

applied to diverse domains of operation. 

 

8. Conclusion  

8.1 Summary of Contributions 

This paper has presented a holistic and technically sound 

agent framework of deploying scalable, secure and tenant-
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sensitive AI agents on the Oracle Cloud Infrastructure using 

Agent-as-a-Service approach. It provided architectural 

principles, design patterns, and implementation strategies 

that integrate with the best current architectural notions of 

cloud-native and AI systems. The framework will use OCI 

native features such as Kubernetes orchestration, identity 

management, and observability tools to build a formidable 

platform that can be used to support various operations in 

different tenants using minimal overheads and high media 

performance without crippling operations. 

 

8.2 Key Findings and Innovations  

Important observations and insights of the study include that 

multi-tenant AaaS framework can dramatically lower the 

cost of infrastructure without jeopardizing performance and 

security objectives. The reinforcement learning and/\or 

autoscaling aspect of the integration allows intelligent 

resources optimization, whereas the tenant isolation is tight 

by means of its namespace-level policies. Its innovations 

incorporate the combination of service mesh policies and 

execution based on events, decentralized IAM governance, 

and automated CI/CD pipelines adapted to managing agents. 

These developments come together to form a blueprint of 

production-ready AI deployments on OCI at a large 

enterprise. 

 

8.3 Recommendations for System Architects  

The three design choices that an AaaS architect on OCI 

should consider to make early include defining tenancy 

boundaries, resources governance, and automating through 

CI/CD. Using Kubernetes namespaces and OCI 

compartments, it is proposed to modularize agents with 

regard to functional scope and isolate them. Care must be 

taken when tuning a service mesh, setting resource quotas, 

and instrumenting observability. There should be the 

progressive incorporation of reinforcement learning in the 

situations where it is applicable to address dynamic scaling, 

and a failure recovery mechanism should exist. Designing 

into future extensibility by contemplating hybrid or multi-

cloud architecture, open and integrative on the one hand, 

and security controls, performance benchmarks, on the 

other, must not be sacrificed by architects. 

 

8.4 Directions for Future Research 

This study can be further developed in many ways. An area 

to consider is to look at cross-cloud federation of agents 

using cross interconnect to other providers with OCI. 

Another is to use more developed AI lifecycle governance 

practices in terms of bias detection, explainability and 

compliance auditing. To a greater extent, the use of large 

language models (LLMs) in the framework of AaaS should 

also be explored with the focus on the management of 

memory and the cost optimization.  

It is also possible to explore the use of multi-agent 

coordination protocols and couple them with federated 

learning workflows in order to achieve novel patterns of 

collaborative intelligence in distributed AI systems. Such 

guidelines are offered to increase the versatility and 

resilience of the framework in more and more regulated and 

complex digital environments. 
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