

Received: 11-07-2024 **Accepted:** 21-08-2024

International Journal of Advanced Multidisciplinary Research and Studies

ISSN: 2583-049X

Utilizing Nanomaterials in Healthcare Supply Chain Management for Improved Drug Delivery Systems

¹ Patience Ndidi Ike, ² Stephen Ehilenomen Aifuwa, ³ Stephanie Blessing Nnabueze, ⁴ Jennifer Olatunde-Thorpe, ⁵ Ejielo Ogbuefi, ⁶ Theophilus Onyekachukwu Oshoba, ⁷ David Akokodaripon

Geometric Power: Aba Power Limited Electric, Nigeria
² Trine University VA, USA
³ Starsight Energy Abuja, Nigeria
⁴ NowNow Digital System, Lagos, Nigeria
⁵ Company: Soodle Technology LLC, Baltimore, MD, USA
⁶ Independent Researcher, UK
⁷ Kyndryl (IBM SPINOFF), Brazil

Corresponding Author: Patience Ndidi Ike

DOI: https://doi.org/10.62225/2583049X.2024.4.4.5154

Abstract

This review paper explores the transformative potential of nanomaterials in healthcare supply chain management and drug delivery systems. It delves into the historical evolution of drug delivery mechanisms and the emergence of nanotechnology as a pivotal innovation. The paper categorizes various nanomaterials, elucidating their mechanisms of action, including enhanced targeting and controlled release, which surpass the capabilities of traditional drug delivery systems. It critically analyzes the

impact of nanomaterials on healthcare supply chain efficiency, regulatory and ethical considerations, sustainability, and cost-effectiveness. The paper identifies barriers to implementation and proposes future research directions to navigate these challenges. Ultimately, it underscores the significance of nanomaterials in advancing healthcare delivery, promising improved patient outcomes and system efficiency.

Keywords: Nanomaterials, Drug Delivery Systems, Healthcare Supply Chain, Nanotechnology, Sustainability, Regulatory Challenges

1. Introduction

The healthcare supply chain encompasses a complex and critical network responsible for procuring, managing, and delivering pharmaceuticals and medical devices from manufacturers to patients. The healthcare sector has faced unprecedented challenges in recent years, including rising demand for personalized medicine, global supply chain disruptions, and the increasing need for cost-effective treatment options (Qiu, Wang, Liang, Han, & Toumi, 2021; Tabish & Nabil, 2015) [31, 40]. Within this intricate framework, drug delivery systems are a cornerstone, ensuring that therapeutics are effectively transported to and assimilated by patients' bodies. The efficiency of these systems directly impacts patient outcomes, healthcare costs, and the overall quality of care. Traditional drug delivery mechanisms, while effective to a degree, often encounter limitations such as poor bioavailability, nonspecific targeting, and adverse side effects, underscoring the need for innovative solutions (Qiao *et al.*, 2021) [30].

Nanomaterials, characterized by their minuscule size and exceptional physicochemical properties (T. O. Scott, Ewim, & Eloka-Eboka, 2022) [36], are emerging as a transformative solution in healthcare, particularly in drug delivery (Balogun *et al.*, 2023) [3]. These materials, ranging from nanoscale liposomes to carbon nanotubes, offer unprecedented advantages over conventional materials, including enhanced solubility, targeted delivery capabilities, and controlled release of pharmaceuticals (Kumar, Rani, Dilbaghi, Tankeshwar, & Kim, 2017) [18]. The unique interaction of nanomaterials with biological systems allows for the precise delivery of drugs to specific sites within the body, minimizing side effects and maximizing therapeutic efficacy. Furthermore, nanomaterials can be engineered to bypass biological barriers, such as the blood-brain barrier, opening new

avenues for treating complex diseases like cancer, Alzheimer's, and cardiovascular conditions. The growing attention towards nanomaterials in healthcare is a testament to their potential in addressing current drug delivery systems' limitations and enhancing patient care (Ceña & Játiva, 2018; Furtado *et al.*, 2018) [6, 13].

This research paper explores nanomaterials' significant potential in revolutionizing healthcare supply chain management and improving drug delivery systems. By examining the integration of nanotechnology within logistics, this study emphasizes healthcare nanomaterials can overcome existing drug distribution, storage, and administration challenges, leading to more efficient, targeted, and cost-effective healthcare solutions. The objectives of this paper include a comprehensive analysis of the types, mechanisms, and benefits of nanomaterials in drug delivery, an evaluation of their impact on the efficiency and effectiveness of healthcare supply chains, and the exploration of future directions in nanotechnology applications within this field.

The scope of this paper encompasses several key aspects of nanomaterial utilization in healthcare supply chains. Firstly, it will detail the variety of nanomaterials currently in use or under investigation for drug delivery purposes, including their physical and chemical properties. Secondly, the paper will discuss how these nanomaterials enhance drug delivery, such as improved solubility and targeted delivery, and their implications for patient outcomes and supply chain efficiency. Thirdly, the impact of nanomaterials on healthcare supply chain management will be analyzed, focusing on aspects such as manufacturing processes, distribution networks, regulatory compliance, sustainability. Lastly, the paper will identify potential barriers to the widespread adoption of nanomaterials in healthcare supply chains and propose recommendations for future research and development in this burgeoning field. Through this comprehensive exploration, the paper aims to illuminate the pivotal role of nanomaterials in advancing healthcare supply chain management and drug delivery systems, thereby contributing to the enhancement of global health outcomes.

2. Literature Review

2.1 Historical Development

The evolution of drug delivery systems is a testament to the dynamic nature of medical science and its response to the changing patient care needs. Initially, drug delivery was limited to conventional forms such as oral and injectable medications, which, while effective, often presented challenges in terms of bioavailability, specificity, and patient compliance. Over the years, the development of controlled-release formulations, transdermal patches, and targeted delivery systems marked significant advancements, aiming to optimize therapeutic efficacy and minimize side effects (Das Kurmi, Tekchandani, Paliwal, & Rai Paliwal, 2017; Manickam, Sreedharan, & Chidambaram, 2019) [9, 22]. Parallelly, the role of supply chain management in healthcare has evolved from a mere logistical function to a strategic component integral to the overall effectiveness of healthcare delivery. Supply chain management in healthcare encompasses the planning, implementation, and control of operations from the procurement of raw materials to the delivery of finished pharmaceutical products to end-users (Almutairi, Salonitis, & Al-Ashaab, 2020; De Vries & Huijsman, 2011) ^[2, 10]. Effective supply chain management is crucial for ensuring drug availability, affordability, and quality, thereby directly impacting patient outcomes and healthcare system efficiency (Seidman & Atun, 2017) ^[37].

2.2 Nanomaterials in Healthcare

The advent of nanotechnology has ushered in a new era in medicine, with nanomaterials playing a pivotal role in innovating drug delivery systems (Lim *et al.*, 2015) ^[19]. Studies and clinical trials have highlighted the versatility of nanomaterials, including nanoparticles, nanocapsules, and nanoemulsions, in enhancing drug solubility, protecting active pharmaceutical ingredients from degradation, and enabling targeted delivery to specific sites within the body. For instance, liposomal nanocarriers have successfully delivered chemotherapeutic agents directly to tumour cells, reducing the impact on healthy tissues and improving patient tolerability (Zakaria *et al.*, 2023) ^[45].

Research has also demonstrated the potential of nanomaterials in crossing biological barriers, a longstanding challenge in drug delivery (Cuggino, Blanco, Gugliotta, Igarzabal, & Calderón, 2019; Silva, 2008; Wu *et al.*, 2022) [8, 38, 44]. Nanoparticles engineered with specific surface properties can traverse the blood-brain barrier, offering new strategies for treating neurological disorders. Additionally, the use of magnetic nanoparticles for drug targeting under the influence of an external magnetic field exemplifies the innovative approaches enabled by nanotechnology in medicine (Ding *et al.*, 2020; Furtado *et al.*, 2018) [12, 13].

2.3 Challenges and Opportunities

Traditional healthcare supply chains face numerous challenges, including the efficient distribution of pharmaceuticals, maintaining product integrity throughout the supply chain, and adapting to the rapid pace of innovation in drug development. Drug counterfeiting, inefficient inventory management, and regulatory compliance further complicate the landscape.

Nanomaterials present unique opportunities to address these challenges. Their small size and customizable surface properties enable more efficient and secure packaging solutions, potentially reducing logistic costs and improving the traceability of pharmaceutical products. Moreover, the enhanced stability and efficacy of drugs formulated with nanomaterials can mitigate the risk of degradation and extend shelf life, optimizing inventory management and distribution processes (Malik, Muhammad, & Waheed, 2023; Pathakoti, Goodla, Manubolu, & Hwang, 2019) [21, 28]. Several theoretical frameworks and models support the integration of nanomaterials into healthcare supply chains. For instance, the Resource-Based View (RBV) theory emphasizes the importance of leveraging unique resources and capabilities, such as nanotechnology, to gain a competitive advantage in the healthcare sector(Hussain & Waheed, 2019) [15]. The RBV framework can be applied to understand how investments in nanotechnology research and development can enhance the value and efficiency of healthcare supply chains.

Another relevant model is the Triple Bottom Line (TBL) framework, which considers supply chain practices' social, environmental, and economic impacts (Singh & Srivastava, 2022) [39]. The use of nanomaterials in drug delivery systems aligns with the TBL principles by potentially reducing environmental waste through efficient dosing and

packaging, improving patient health outcomes, and reducing healthcare costs through more effective treatments.

In conclusion, the literature reveals a growing recognition of the transformative potential of nanomaterials in healthcare, particularly within drug delivery systems and supply chain management. By overcoming the limitations of traditional drug delivery methods and addressing the challenges of healthcare supply chains, nanomaterials pave the way for innovative, efficient, and patient-centered healthcare solutions. Theoretical frameworks like the RBV and TBL offer valuable insights into the strategic integration of nanotechnology in healthcare, underscoring the multidimensional benefits of this approach.

3. Nanomaterials in Drug Delivery Systems3.1 Types of Nanomaterials

Nanomaterials have revolutionized the field of drug delivery by offering innovative solutions that overcome the limitations of traditional drug delivery systems. These materials are characterized by their nanoscale size i.e., 1 to 100 nanometers (T. Scott, Ewim, & Eloka-Eboka, 2023) [35]. They can be classified into various types based on composition, structure, and functionality. Key types of nanomaterials used in healthcare for drug delivery include:

- Liposomes: Spherical vesicles composed of one or more phospholipid bilayers, capable of encapsulating both hydrophilic and hydrophobic drugs. Liposomes enhance drug solubility, protect the drug from degradation, and facilitate targeted delivery to disease sites (Bozzuto & Molinari, 2015) [5].
- Dendrimers: Highly branched, tree-like structures with a high degree of molecular uniformity, size precision, and surface functionality. Dendrimers encapsulate drugs within their internal cavities and deliver them to specific tissues (Boas & Heegaard, 2004) [4].
- Metallic Nanoparticles: Gold and silver nanoparticles are known for their unique optical properties and ability to target and penetrate specific cells, often used in cancer therapy (Nagavarma, Yadav, Ayaz, Vasudha, & Shivakumar, 2012) [26].
- Polymeric Nanoparticles: Made from biodegradable polymers, these nanoparticles are designed for controlled drug release, enhancing the bioavailability and stability of drugs (Vauthier & Bouchemal, 2009)
- Carbon Nanotubes: Cylindrical nanostructures with exceptional mechanical, electrical, and thermal properties, useful for delivering drugs across biological barriers and targeting specific cell types (Bozzuto & Molinari, 2015) [5].

3.2 Mechanisms of Action

Nanomaterials improve drug delivery through several innovative mechanisms:

- Nanomaterials can be engineered with surface modifications, such as the addition of targeting ligands, which bind to specific receptors on the surface of diseased cells, allowing for targeted drug delivery. This specificity minimizes the impact on healthy cells and reduces side effects (Patel et al., 2019) [27].
- Many drugs suffer from poor solubility, limiting their effectiveness. Nanocarriers can enhance the solubility of hydrophobic drugs, ensuring their more efficient

- transport and absorption in the body (Díez-Pascual, 2022) [11].
- Nanomaterials can be designed to release drugs in a controlled manner, either through degradation of the nanocarrier material or by responding to specific triggers in the body, such as pH changes or enzymatic activity. This controlled release maintains optimal drug concentrations at the target site for extended periods, improving therapeutic outcomes.
- Nanomaterials can cross biological barriers, such as the blood-brain barrier, which is typically impermeable to most drugs. This capability opens new avenues for treating previously difficult diseases to target with conventional drug delivery methods (Salatin, Maleki Dizaj, & Yari Khosroushahi, 2015) [33].

3.3 Advantages of Conventional Systems

Nanomaterial-enhanced drug delivery systems offer numerous advantages over traditional methods (Liu *et al.*, 2023; Mudshinge, Deore, Patil, & Bhalgat, 2011; Patra *et al.*, 2018; Sahu *et al.*, 2021; Sapsford *et al.*, 2013) [20, 24, 29, 32, 34].

- Efficiency: By targeting drugs directly to diseased cells, nanomaterials minimize drug wastage and enhance the therapeutic efficiency of treatments. This targeted approach allows for lower dosages, reducing the risk of toxicity and side effects.
- Effectiveness: The controlled release mechanisms of nanomaterials ensure a consistent supply of the drug to the target site, enhancing the effectiveness of the treatment. This is particularly beneficial for chronic diseases where maintaining steady drug levels is crucial.
- Patient Outcomes: Improved targeting and reduced side effects directly translate to better patient outcomes.
 Nanomaterials in drug delivery can lead to faster recovery times, lessened discomfort, and improved overall treatment success rates.
- Versatility: Nanomaterials are versatile in their application capable of delivering a wide range of drugs, including small molecules, proteins, and nucleic acids. This versatility extends the potential for nanotechnology in treating a broad spectrum of diseases, from cancer to infectious diseases and beyond.

4. Impact on Healthcare Supply Chain Management 4.1 Supply Chain Efficiency

Integrating nanomaterials into healthcare supply chains can significantly enhance operational efficiency across multiple dimensions, including manufacturing, distribution, and inventory management.

Nanomaterials enable more effective and targeted drug delivery systems, which can streamline the manufacturing process. By reducing the quantity of active pharmaceutical ingredients (APIs) needed for the same therapeutic effect, nanomaterials can lead to smaller, more efficient production runs. Additionally, using nanotechnology in manufacturing processes can improve yield through more precise synthesis methods, reducing waste and enhancing scalability (Halwani, 2022; Kaialy & Al Shafiee, 2016) [14, 17].

Nanomaterial-based drug delivery systems' stability and reduced size facilitate easier and more efficient distribution. These materials can often withstand a broader range of

environmental conditions, reducing the need for specialized storage and handling (Cheng, Que, Chen, Sun, & Wei, 2022; Tang *et al.*, 2021) ^[7, 41]. This resilience can lead to more straightforward logistics, with potential reductions in shipping costs and the carbon footprint associated with distribution. Enhanced drug stability and shelf-life directly impact inventory management by reducing the frequency of stockouts and the need for excessive safety stock. Furthermore, the ability of nanomaterials to enable precise dosing can lead to more predictable usage patterns, improving inventory forecasts and optimizing stock levels (Javaid, Haleem, Singh, & Suman, 2022; Vora *et al.*, 2023) ^[16, 43]

4.2 Regulatory and Ethical Considerations

Incorporating nanomaterials into healthcare products introduces a complex regulatory and ethical landscape that must be navigated with care.

- Regulatory Landscape: Regulatory bodies worldwide, such as the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA), are continuously adapting their guidelines to address the unique challenges presented by nanomaterials. This includes ensuring the safety, efficacy, and quality of nanomaterial-based products. The regulatory approval process for these products often requires extensive characterization and testing to understand their behavior in the body, their interaction with biological systems, and their potential environmental impact (Mühlebach, 2018) [25].
- Ethical Considerations: Ethical concerns related to the use of nanomaterials in healthcare include patient safety, informed consent, and access to treatment. Given the novel properties of nanomaterials, ensuring patient safety and adequately communicating potential risks and benefits become paramount. Moreover, there is a need to ensure equitable access to these advanced treatments, preventing disparities in healthcare outcomes based on socio-economic status (Allhoff & Lin, 2009; Mehta, Shetty, Prajapati, & Shetty, 2024) [1, 23]

4.3 Sustainability and Cost-effectiveness

The sustainability and cost-effectiveness of nanomaterials in drug delivery systems are critical in evaluating their impact on healthcare supply chain management.

Nanotechnology offers a pathway to more sustainable healthcare practices by developing drug delivery systems that require fewer resources in raw materials and energy consumption. The precise targeting and controlled release capabilities of nanomaterials can also minimize drug wastage and reduce the environmental footprint associated with the production and disposal of pharmaceuticals. However, the sustainability of nanomaterials also depends on their lifecycle, from synthesis to disposal, necessitating ongoing research into environmentally friendly nanomaterials and their degradation products.

While the initial development and production costs of nanomaterial-based drug delivery systems can be higher than those of traditional drugs, the overall cost-effectiveness should be evaluated regarding patient outcomes and long-term healthcare savings. Improved efficacy, reduced side effects, and lower dosages can lead to shorter hospital stays, less frequent dosing, and fewer treatment-related

complications, collectively contributing to significant healthcare savings. Additionally, the extended shelf life and enhanced stability of nanomaterial-based products can reduce logistic and inventory costs, further improving the economic viability of these innovations.

5. Future Directions and Conclusion

Ongoing research in nanotechnology promises to introduce groundbreaking innovations in drug delivery systems, further transforming healthcare supply chain management. Innovations include the development of smart nanomaterials capable of responding to physiological conditions for targeted drug release, using nanorobots for precision medicine, and advancing non-invasive delivery methods using nanotechnology for chronic diseases. Integrating digital technologies, such as IoT and AI, with nanomaterialbased drug delivery systems could lead to enhanced tracking, monitoring, and management of drug distribution and consumption, ensuring real-time adjustments to treatment protocols and personalized healthcare solutions. Despite the potential benefits, several barriers could impede the widespread adoption of nanomaterials in healthcare supply chains. Technological challenges include the scalability of nanomaterial production and ensuring consistent quality and performance across batches. Regulatory challenges stem from the need for comprehensive frameworks that adequately address nanomaterials' safety, efficacy, and environmental impact, requiring extensive research and collaboration between industry, academia, and regulatory bodies. Market challenges include the high cost of research and development, patent issues, and the need for public and healthcare professional education to ensure acceptance and proper use of these advanced systems.

This paper has highlighted the transformative potential of nanomaterials in revolutionizing healthcare supply chain management and enhancing drug delivery systems. Nanomaterials offer significant advantages in efficiency, effectiveness, and patient outcomes, providing innovative solutions to longstanding challenges in healthcare delivery. Their ability to improve supply chain operations, navigate regulatory and ethical considerations, and contribute to sustainability and cost-effectiveness underscores their pivotal role in the future of healthcare.

Future research should focus on addressing the identified barriers to the adoption of nanomaterials in healthcare supply chains. This includes developing scalable and cost-effective production methods for nanomaterials, establishing comprehensive regulatory guidelines that ensure safety and efficacy while fostering innovation, and conducting market research to better understand healthcare provider and patient needs. Additionally, exploring the environmental impact of nanomaterials throughout their lifecycle and developing strategies for their safe disposal and management is crucial. Collaborative efforts between researchers, industry professionals, and policymakers will be essential in advancing the use of nanomaterials in healthcare, ensuring that these innovative systems can fully realize their potential to improve patient care and healthcare system efficiency.

6. References

- 1. Allhoff F, Lin P. Nanotechnology & society: Current and emerging ethical issues: Springer, 2009.
- 2. Almutairi AM, Salonitis K, Al-Ashaab A. A framework

- for implementing lean principles in the supply chain management at health-care organizations: Saudi's perspective. International Journal of Lean Six Sigma. 2020; 11(3):463-492.
- 3. Balogun OD, Ayo-Farai O, Ogundairo O, Maduka CP, Okongwu CC, Babarinde AO, *et al.* Innovations in drug delivery systems: A review of the pharmacist's role in enhancing efficacy and patient compliance, 2023.
- 4. Boas U, Heegaard PM. Dendrimers in drug research. Chemical Society Reviews. 2004; 33(1):43-63.
- 5. Bozzuto G, Molinari A. Liposomes as nanomedical devices. International Journal of Nanomedicine, 2015, 975-999.
- 6. Ceña V, Játiva P. Nanoparticle crossing of blood-brain barrier: A road to new therapeutic approaches to central nervous system diseases. In (Vol. 13): Future Medicine, 2018, 1513-1516.
- 7. Cheng Z, Que H, Chen L, Sun Q, Wei X. Nanomaterial-based drug delivery system targeting lymph nodes. Pharmaceutics. 2022; 14(7):1372.
- 8. Cuggino JC, Blanco ERO, Gugliotta LM, Igarzabal CIA, Calderón M. Crossing biological barriers with nanogels to improve drug delivery performance. Journal of Controlled Release. 2019; 307:221-246.
- Das Kurmi B, Tekchandani P, Paliwal R, Rai Paliwal S. Transdermal drug delivery: Opportunities and challenges for controlled delivery of therapeutic agents using nanocarriers. Current Drug Metabolism. 2017; 18(5):481-495.
- De Vries J, Huijsman R. Supply chain management in health services: An overview. Supply Chain Management: An International Journal. 2011; 16(3):159-165.
- 11. Díez-Pascual AM. Surface engineering of nanomaterials with polymers, biomolecules, and small ligands for nanomedicine. Materials. 2022; 15(9):3251.
- 12. Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, *et al.* Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Materials Today. 2020; 37:112-125.
- 13. Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood-brain barrier: The role of nanomaterials in treating neurological diseases. Advanced Materials. 2018; 30(46):1801362.
- 14. Halwani AA. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics. 2022; 14(1):106.
- 15. Hussain RT, Waheed A. Strategic resources and firm performance: An application of the resource based view, 2019.
- 16. Javaid M, Haleem A, Singh RP, Suman R. Artificial intelligence applications for industry 4.0: A literature-based study. Journal of Industrial Integration and Management. 2022; 7(1):83-111.
- 17. Kaialy W, Al Shafiee M. Recent advances in the engineering of nanosized active pharmaceutical ingredients: Promises and challenges. Advances in Colloid and Interface Science. 2016; 228:71-91.
- 18. Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim K-H. Carbon nanotubes: A novel material for multifaceted applications in human healthcare. Chemical Society Reviews. 2017; 46(1):158-196.
- 19. Lim E-K, Kim T, Paik S, Haam S, Huh Y-M, Lee K. Nanomaterials for theranostics: recent advances and

- future challenges. Chemical Reviews. 2015; 115(1):327-394.
- 20. Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, *et al.* Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters. 2023; 34(2):107518.
- 21. Malik S, Muhammad K, Waheed Y. Nanotechnology: A revolution in modern industry. Molecules. 2023; 28(2):661.
- 22. Manickam B, Sreedharan R, Chidambaram K. Drug/vehicle impacts and formulation centered stratagems for enhanced transdermal drug permeation, controlled release and safety: Unparalleled past and recent innovations-an overview. Current Drug Therapy. 2019; 14(3):192-209.
- 23. Mehta N, Shetty S, Prajapati BG, Shetty S. Regulatory and ethical concerns in the use of nanomaterials. In Alzheimer's Disease and Advanced Drug Delivery Strategies: Elsevier, 2024, 197-212.
- 24. Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharmaceutical Journal. 2011; 19(3):129-141.
- 25. Mühlebach S. Regulatory challenges of nanomedicines and their follow-on versions: A generic or similar approach? Advanced Drug Delivery Reviews. 2018; 131:122-131.
- 26. Nagavarma B, Yadav HK, Ayaz A, Vasudha L, Shivakumar H. Different techniques for preparation of polymeric nanoparticles-a review. Asian J. Pharm. Clin. Res. 2012; 5(3):16-23.
- 27. Patel P, Hanini A, Shah A, Patel D, Patel S, Bhatt P, *et al.* Surface Modification of Nanoparticles for Targeted Drug Delivery: Springer, 2019.
- 28. Pathakoti K, Goodla L, Manubolu M, Hwang H-M. Nanoparticles and their potential applications in agriculture, biological therapies, food, biomedical, and pharmaceutical industry: A review. Nanotechnology and Nanomaterial Applications in Food, Health, and Biomedical Sciences, 2019, 121-162.
- Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology. 2018; 16:1-33
- 30. Qiao Q, Liu X, Yang T, Cui K, Kong L, Yang C, et al. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design. Acta Pharmaceutica Sinica B. 2021; 11(10):3060-3091.
- 31. Qiu T, Wang Y, Liang S, Han R, Toumi M. The impact of COVID-19 on the cell and gene therapies industry: Disruptions, opportunities, and future prospects. Drug Discovery Today. 2021; 26(10):2269-2281.
- 32. Sahu T, Ratre YK, Chauhan S, Bhaskar L, Nair MP, Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology. 2021; 63:102487.
- 33. Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biology International. 2015; 39(8):881-890.
- 34. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, et al. Functionalizing nanoparticles with

- biological molecules: Developing chemistries that facilitate nanotechnology. Chemical Reviews. 2013; 113(3):1904-2074.
- 35. Scott T, Ewim D, Eloka-Eboka A. Experimental study on the influence of volume concentration on natural convection heat transfer with Al2O3-MWCNT/water hybrid nanofluids. Materials Today: Proceedings, 2023.
- Scott TO, Ewim DR, Eloka-Eboka AC. Hybrid nanofluids flow and heat transfer in cavities: A technological review. International Journal of Low-Carbon Technologies. 2022; 17:1104-1123.
- 37. Seidman G, Atun R. Do changes to supply chains and procurement processes yield cost savings and improve availability of pharmaceuticals, vaccines or health products? A systematic review of evidence from low-income and middle-income countries. BMJ Global Health. 2017; 2(2):e000243.
- 38. Silva GA. Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS. BMC Neuroscience. 2008; 9(Suppl 3):S4.
- 39. Singh S, Srivastava SK. Decision support framework for integrating triple bottom line (TBL) sustainability in agriculture supply chain. Sustainability Accounting, Management and Policy Journal. 2022; 13(2):387-413.
- 40. Tabish S, Nabil S. Future of healthcare delivery: Strategies that will reshape the healthcare industry landscape. International Journal of Science and Research. 2015; 4(2):727-758.
- 41. Tang L, He S, Yin Y, Liu H, Hu J, Cheng J, *et al.* Combination of nanomaterials in cell-based drug delivery systems for cancer treatment. Pharmaceutics. 2021; 13(11):1888.
- 42. Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharmaceutical Research. 2009; 26:1025-1058.
- 43. Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. 2023; 15(7):1916.
- 44. Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, *et al.* How nanoparticles open the paracellular route of biological barriers: Mechanisms, applications, and prospects. ACS Nano. 2022; 16(10):15627-15652.
- 45. Zakaria MM, Alzayed KSM, Meashi AI, Al Ghamdi SA, Almowaled SSS, Alnakhly AA, *et al.* Revolutionizing Drug Delivery: Innovations and Challenges in Nanotechnology. Journal of Namibian Studies: History Politics Culture. 2023; 38:1786-1797.