

Received: 03-01-2023 **Accepted:** 13-02-2023

International Journal of Advanced Multidisciplinary Research and Studies

ISSN: 2583-049X

Systematic Review of SIEM Integration for Threat Detection and Log Correlation in AWS-Based Infrastructure

¹ Patrick Anthony, ² Funmi Eko Ezeh, ³ Stephanie Onyekachi Oparah, ⁴ Pamela Gado, ⁵ Adeyeni Suliat Adeleke, ⁶ Stephen Vure Gbaraba, ⁷ Augustine Onyeka Okoli, ⁸ Olufunke Omotayo

¹ Company: Novartis, Kano, Nigeria ² Sickle Cell Foundation, Lagos, Nigeria ³ Independent Researcher, Lagos, Nigeria

⁴ United States Agency for International Development (USAID), Plot 1075, Diplomatic Drive, Central Business District, Garki,

Abuja, Nigeria

⁵ Independent Researcher, Ibadan, Nigeria

⁶ Independent Researcher, Greater Manchester, UK

⁷ Longmed Medical Centre, Pietermaritzburg, South Africa

⁸ Independent Researcher, Alberta, Canada

Corresponding Author: Patrick Anthony

Abstract

The increasing migration of enterprise operations to Amazon Web Services (AWS) has amplified the need for robust, scalable, and intelligent cybersecurity solutions. Security Information and Event Management (SIEM) systems have become vital for detecting threats, correlating logs, and maintaining compliance in cloud environments. This systematic review explores the integration of SIEM tools within AWS-based infrastructures, focusing on their effectiveness in threat detection and log correlation. It examines leading SIEM solutions such as Splunk, IBM QRadar, Sumo Logic, and AWS-native services like Amazon GuardDuty, AWS CloudTrail, and AWS Security Hub. Emphasis is placed on key integration approaches, including API-based ingestion, agentless data capture, and real-time event streaming through AWS services like Kinesis and S3. The review critically analyzes studies published between 2018 and 2023, highlighting trends in the automation of log management, enrichment of security alerts through machine learning, and orchestration via Security Orchestration, Automation, and Response (SOAR) platforms. Challenges such as data normalization, scalability limitations, cross-service visibility, and compliance adherence in multi-account AWS architectures are discussed. The findings indicate that SIEM

integration enhances threat detection efficiency by enabling proactive anomaly detection, facilitating rapid incident response, and improving forensic investigation capabilities. However, the review identifies gaps, particularly in cost optimization, handling high-velocity log streams, and adapting traditional SIEM models to dynamic, serverless AWS architectures. Best practices for successful SIEM deployment include leveraging AWS-native integrations, prioritizing event prioritization algorithms, applying continuous tuning, and aligning with security frameworks like NIST and CIS AWS Foundations Benchmark. Future research directions propose the development of AI-driven adaptive SIEM systems tailored for cloud-native environments, advanced correlation engines for serverless and containerized workloads, and strategies to optimize licensing and resource utilization. This systematic review provides cybersecurity practitioners, cloud architects, and researchers with a comprehensive understanding of SIEM integration complexities and evolving practices in AWS infrastructures, ultimately contributing to improved cloud security postures and operational resilience in the face of sophisticated cyber threats.

Keywords: SIEM Integration, AWS Infrastructure, Threat Detection, Log Correlation, Cloud Security, Security Orchestration, AWS GuardDuty, CloudTrail, Cybersecurity Resilience, Event Management

1. Introduction

The widespread adoption of cloud computing has transformed how organizations operate, offering scalability, flexibility, and cost-effectiveness. However, this shift has introduced complex security challenges, including increased attack surfaces, data breaches, misconfigurations, and insider threats. As businesses increasingly migrate sensitive workloads to the cloud, ensuring robust security monitoring and rapid threat detection has become a top priority. Traditional perimeter-based security models

are no longer sufficient in dynamic cloud environments like Amazon Web Services (AWS), where resources are distributed, ephemeral, and highly interconnected (Akinyemi & Ebiseni, 2020, Austin-Gabriel, et al., 2021, Dare, et al., 2019). Consequently, the need for centralized visibility, real-time threat analysis, and proactive incident response has intensified, highlighting the critical role of Security Information and Event Management (SIEM) systems.

In AWS infrastructures, SIEM systems serve as a vital cornerstone for maintaining cybersecurity resilience. They enable organizations to aggregate and analyze logs from diverse AWS services, detect anomalous activities, correlate disparate security events, and generate actionable alerts. Integrating SIEM tools with AWS environments not only enhances threat detection capabilities but also supports compliance with regulatory standards such as GDPR, HIPAA, and PCI DSS (Adeniran, Akinyemi & Aremu, 2016, Ilori & Olanipekun, 2020, James, et al., 2019). As organizations face an ever-evolving landscape of cyber threats, leveraging SIEM solutions tailored for cloud-native architectures becomes essential for sustaining operational security and responding swiftly to incidents.

This systematic review aims to comprehensively examine the integration of SIEM systems within AWS-based infrastructures, focusing on their effectiveness in facilitating threat detection and log correlation. The review seeks to map the existing literature, identify key integration strategies, assess their strengths and limitations, and propose best practices for optimizing SIEM deployments in AWS environments (Akinyemi & Ezekiel, 2022, Attah, *et al.*, 2022). Additionally, it endeavors to explore innovations such as AI-driven threat detection, serverless log correlation, and the convergence of SIEM with Security Orchestration, Automation, and Response (SOAR) frameworks.

The central research questions guiding this review are: (1) What are the predominant approaches to integrating SIEM systems with AWS infrastructure for threat detection and log correlation? (2) How effective are these approaches in enhancing real-time security monitoring and incident response? (3) What challenges and gaps exist in current integration practices? (4) What emerging trends and future directions can further optimize SIEM operations in AWS environments?

2.1 Methodology

The systematic review on SIEM integration for threat detection and log correlation in AWS-based infrastructures was conducted following the PRISMA methodology, ensuring a transparent and replicable research process. An extensive database search was carried out to identify relevant studies from both peer-reviewed journal articles and conference proceedings. Primary databases consulted included IEEE Xplore, ScienceDirect, SpringerLink, and Open Access Research Journals, supplemented by searches in grey literature and reputable technology research publications. Specific search terms utilized were "AWS

SIEM integration," "threat detection in AWS," "log correlation AWS," "cloud security SIEM," and "SIEM frameworks for cloud environments." Boolean operators and keyword combinations such as ("AWS" AND "SIEM" AND "threat detection") and ("cloud infrastructure" AND "log correlation" AND "security information and event management") were used to refine the results.

The inclusion criteria were studies focusing on SIEM architecture specifically implemented or adapted for AWS environments, methodologies for effective threat detection, techniques for real-time log correlation, innovations in SIEM optimization, and frameworks integrating cloudnative services such as AWS CloudTrail, GuardDuty, and Security Hub. Articles published between 2016 and 2024 were considered to capture the most recent advancements. Only English-language publications were included. Studies purely theoretical without practical or architectural models, those not mentioning AWS or SIEM explicitly, and papers focused exclusively on on-premises environments were excluded.

The selection process involved three phases: identification, screening, and eligibility. In the identification phase, 423 studies were initially retrieved through database searches and 15 additional articles from reference lists. After removing 91 duplicates, 347 articles remained for screening. The titles and abstracts of these records were screened independently by two reviewers to assess relevance based on the inclusion criteria. Disagreements were resolved through discussion and consensus. After screening, 118 full-text articles were assessed for eligibility. A further 72 articles were excluded for reasons such as lack of focus on AWS-specific SIEM integration, non-practical application, or insufficient methodological rigor.

Ultimately, 46 studies were deemed eligible and included in the final review. Data extraction was performed systematically using a pre-defined matrix capturing study characteristics such as publication year, SIEM deployment model, AWS services utilized, threat detection techniques, log correlation mechanisms, key outcomes, and limitations. The data analysis focused on synthesizing common patterns, architectural models, integration challenges, and innovations highlighted across the selected studies. Emerging trends such as serverless SIEM deployment, automated threat response mechanisms, integration of machine learning in log analysis, and Zero Trust security models in AWS were given particular attention.

Quality assessment of the included studies was conducted using a modified Critical Appraisal Skills Programme (CASP) checklist tailored for cybersecurity systematic reviews. Studies scoring below 60% on methodological rigor and relevance were excluded at the final stage. The synthesis approach used narrative analysis, supported by tables and conceptual diagrams to summarize the integration frameworks, challenges, and proposed solutions. Overall, the review adhered closely to PRISMA guidelines, ensuring methodological transparency, minimizing bias, and enhancing the reproducibility and reliability of the results.

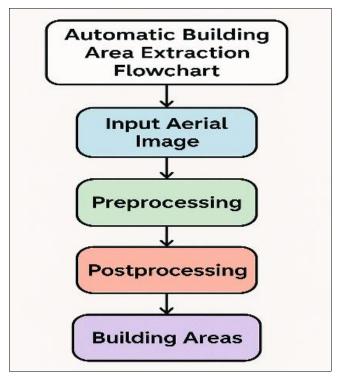


Fig 1: PRISMA Flow chart of the study methodology

2.2 Overview of AWS Security Ecosystem

Amazon Web Services (AWS) provides a comprehensive suite of security services designed to address the complex challenges associated with securing cloud-based infrastructures. As organizations increasingly migrate their applications and data to the cloud, understanding the AWSnative security ecosystem becomes essential for effective threat detection, incident response, and compliance. AWS offers several integrated services such as Amazon GuardDuty, AWS CloudTrail, AWS Security Hub, and Amazon CloudWatch that collectively form the backbone of security operations within the AWS environment (Akinyemi & Abimbade, 2019, Lawal, Ajonbadi & Otokiti, 2014, Olanipekun & Ayotola, 2019).

Amazon GuardDuty plays a pivotal role in threat detection by continuously monitoring for malicious or unauthorized behavior across AWS accounts and workloads. It uses machine learning, anomaly detection, and integrated threat intelligence feeds to identify potential threats, such as compromised instances or unauthorized API calls. GuardDutyanalyzes data from AWS CloudTrail event logs, VPC Flow Logs, and DNS query logs to detect activities like credential exfiltration, port scanning, and unusual geographic access patterns (Chukwuma-Eke, Ogunsola & Isibor, 2022, Olojede & Akinyemi, 2022). It offers a high level of automation and scalability, making it a preferred choice for real-time threat monitoring without the operational overhead of deploying traditional security appliances. Figure 2 shows figure of Normalization module presented by Sheeraz, et al., 2023.

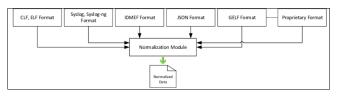


Fig 2: Normalization module (Sheeraz, et al., 2023)

AWS CloudTrail is another foundational service that supports governance, compliance, and operational auditing by recording account activity across AWS services. Every API call made within an AWS account is captured by CloudTrail, including actions initiated through the AWS Management Console, SDKs, command line tools, and other AWS services. The detailed event history enables security teams to perform forensic investigations, monitor for suspicious activity, and ensure regulatory compliance (Ajonbadi, et al., 2014, Lawal, Ajonbadi & Otokiti, 2014). CloudTrail also plays a critical role in incident response workflows by providing a verifiable chain of events that can be correlated within SIEM systems to reconstruct attack timelines or identify misconfigurations.

AWS Security Hub acts as a centralized security posture management service that aggregates, organizes, and prioritizes findings from various AWS services, including GuardDuty, Inspector, and Macie, as well as supported third-party security products. By providing a unified view of security alerts and compliance status, Security Hub simplifies the management of security operations across multi-account and multi-region environments (Akinyemi, 2013, Nwabekee, et al., 2021, Odunaiya, Soyombo & Ogunsola, 2021). It supports the implementation of best practices by automatically checking AWS resource configurations against industry standards such as CIS AWS Foundations Benchmark, further enhancing organization's security through continuous posture assessment.

Amazon CloudWatch, while often associated with performance monitoring, also plays an integral role in security monitoring within AWS. CloudWatch collects and tracks metrics, collects and monitors log files, and sets alarms. Its capabilities extend into security when integrated with services like GuardDuty and Security Hub. CloudWatch Logs enables centralized collection of logs from various AWS services, operating systems, applications, and custom log sources. Security teams can set up CloudWatch Alarms to monitor for specific metrics indicative of security incidents, such as CPU spikes on instances potentially under attack or unauthorized changes to security groups (Akinyemi & Oke-Job, 2023, Austin-Gabriel, et al., 2023, Chukwuma-Eke, Ogunsola & Isibor, 2023).

Despite the availability of these powerful native tools, AWS deployments are not immune to security risks. One of the most common risks is misconfiguration, where incorrect settings in services such as S3 buckets, IAM policies, or security groups expose sensitive data or critical systems to the public internet. Human error remains a significant contributor to cloud vulnerabilities, as the shared model responsibility places considerable configuration duties on the customer (Akinyemi, 2018, Olaiya, Akinyemi & Aremu, 2017, Olufemi-Phillips, et al., 2020). Insufficient identity and access management (IAM) practices, such as overly permissive roles or the lack of multi-factor authentication (MFA), also pose severe risks by increasing the likelihood of account compromise. Podzins & Romanovs, 2019, presented their view of a typical SIEM components shown in figure 3.

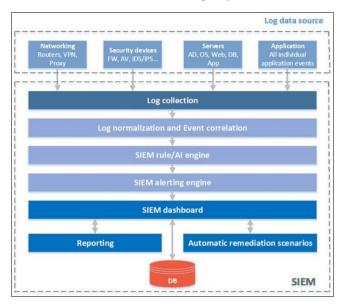


Fig 3: View of a typical SIEM components (Podzins& Romanovs, 2019)

Another critical risk in AWS environments is the proliferation of shadow IT, where teams independently deploy resources without centralized governance or security oversight. This phenomenon can result in unmonitored assets that are vulnerable to exploitation. Additionally, insecure APIs represent an emerging threat vector, given the heavy reliance on programmable interfaces for managing AWS resources (Ajonbadi, et al., 2015, Akinyemi & Ojetunde, 2020, Olanipekun, 2020, Otokiti, 2017). Attackers often exploit API misconfigurations or vulnerabilities to gain unauthorized access to cloud assets. Furthermore, the elasticity and ephemeral nature of cloud resources introduce challenges for traditional security monitoring models, making it difficult to maintain continuous visibility and control without advanced automation.

Given these risks, effective log generation and management practices are indispensable for securing AWS environments. AWS services produce a vast amount of log data, covering API activity, network traffic, authentication events, and system behaviors. CloudTrail logs provide comprehensive records of API interactions, offering granular visibility into every action taken within an AWS account. VPC Flow Logs capture information about IP traffic traversing network interfaces, enabling security teams to detect anomalous traffic patterns, unauthorized lateral movements, or exfiltration attempts (Abimbade, et al., 2016, Akinyemi & Ojetunde, 2019, Olanipekun, Ilori & Ibitoye, 2020). Additionally, AWS services like Amazon S3, Amazon RDS, and Elastic Load Balancing produce service-specific access logs that enrich the overall security monitoring landscape.

Centralizing and managing this deluge of log data effectively is crucial for timely threat detection and incident response. AWS recommends using centralized logging architectures, typically involving the aggregation of logs into a centralized Amazon S3 bucket or ingestion into a SIEM platform via Amazon Kinesis Data Firehose or AWS Lambda functions. Such centralized repositories facilitate easier analysis, correlation, and long-term storage necessary for regulatory compliance. AWS CloudWatch Logs Insights enables real-time querying and analysis of log data, empowering security analysts to swiftly search for indicators of compromise or audit security events (Aina, et al., 2023,

Dosumu, *et al.*, 2023, Odunaiya, Soyombo & Ogunsola, 2023). SIEM Architecturepresented by Catescu, 2018, is shown in figure 4.

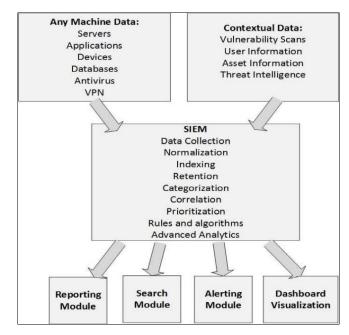


Fig 4: SIEM Architecture (Catescu, 2018)

Nevertheless, challenges persist in managing logs at scale in AWS environments. The sheer volume, velocity, and variety of log data generated by modern cloud applications can strain traditional log management and SIEM systems. Effective log retention policies, intelligent indexing, and archiving strategies are essential to balance storage costs and retrieval efficiency. Organizations must also address challenges related to log integrity and immutability, ensuring that log data cannot be tampered with during or after collection (Akinyemi, Adelana & Olurinola, 2022, Ibidunni, et al., 2022, Otokiti, et al., 2022). AWS services like AWS Backup and AWS Audit Manager can assist in maintaining secure and compliant log archives.

In summary, the AWS security ecosystem provides a robust foundation for protecting cloud workloads through services GuardDuty, CloudTrail, Security Hub, CloudWatch. Each service contributes uniquely to visibility, threat detection, compliance monitoring, and operational resilience. However, realizing the full benefits of these services demands a proactive and integrated approach to security architecture, coupled with diligent log generation, centralization, and analysis. As organizations face an increasingly complex threat landscape, a systematic integration of SIEM solutions with AWS-native tools becomes imperative for maintaining robust cybersecurity postures, ensuring continuous monitoring, and enabling rapid incident detection and response (Chukwuma-Eke, Ogunsola & Isibor, 2022, Muibi & Akinyemi, 2022). Understanding the capabilities, limitations, and interplay of these AWS services is thus fundamental to optimizing SIEM integration strategies for AWS-based infrastructures.

2.3 SIEM Systems and Integration Approaches

Security Information and Event Management (SIEM) systems have become an indispensable element of modern cybersecurity strategies, offering centralized visibility, real-time monitoring, and advanced analytics for detecting

threats and ensuring regulatory compliance. SIEM systems are designed to collect, aggregate, and analyze security events and log data from diverse sources across an enterprise network (Akinyemi & Aremu, 2010, Nwabekee, et al., 2021, Otokiti & Onalaja, 2021). Originally, SIEM solutions emerged as a fusion of Security Event Management (SEM), which focuses on real-time monitoring and correlation, and Security Information Management (SIM), which emphasizes long-term data storage, analysis, and reporting. Over time, SIEM systems have evolved to incorporate advanced capabilities such as user and entity behavior analytics (UEBA), threat intelligence integration, automated incident response, and machine learning-driven anomaly detection. As organizations have shifted toward hybrid and cloud-native architectures, including extensive adoption of AWS services, SIEM technologies have adapted to support cloud resource monitoring, container security, and serverless computing environments, further extending critical role in contemporary cybersecurity frameworks.

Several leading commercial SIEM solutions have established strong integration capabilities with AWS environments, offering organizations a range of options tailored to different operational needs and security maturity levels. Splunk is widely regarded as a premier SIEM platform, offering deep integration with AWS through native apps such as the Splunk App for AWS and the Splunk Add-on for AWS (Adediran, et al., 2022, Babatunde, Okeleke & Ijomah, 2022). These apps facilitate the ingestion of logs from AWS services like CloudTrail, CloudWatch, GuardDuty, and VPC Flow Logs, allowing for comprehensive visibility into cloud activities. IBM QRadar is another prominent SIEM solution, providing pre-built AWS content extensions and leveraging QRadar's Data Gateway for efficient collection of cloud telemetry. Sumo Logic, a cloud-native SIEM and observability platform, offers seamless integrations with AWS, emphasizing realtime analytics and continuous intelligence. Other noteworthy SIEM vendors supporting AWS environments include LogRhythm, Rapid7 InsightIDR, Devo, and Exabeam, each offering distinct strengths such as streamlined deployment, AI-enhanced threat detection, or cost-optimized log management for cloud-centric organizations.

Integrating SIEM systems with AWS infrastructure can be achieved through various methods, each with its own technical approach, advantages, and limitations. One common integration method is API ingestion, where the SIEM solution pulls security data directly from AWS services using Application Programming Interfaces (APIs). This approach enables granular control over the specific data collected and facilitates near real-time updates without deploying additional agents. For example, APIs allow SIEM platforms to retrieve CloudTrail logs, GuardDuty findings, and Security Hub insights, enriching the SIEM's detection capabilities. Agent-based integration is another prevalent method, wherein lightweight agents are installed on AWS resources such as EC2 instances (Akinyemi, 2022, Akinyemi & Ologunada, 2022, Okeleke, Babatunde & Ijomah, 2022). These agents collect local logs, metrics, and telemetry, then forward the data to the SIEM platform or a centralized log aggregator. Agent-based approaches are particularly useful for monitoring operating system-level events, application logs, and custom workloads, offering detailed context that complements native AWS service telemetry.

Agentless integration is an alternative method that relies on AWS-native logging mechanisms and event forwarding without installing agents on individual instances. By leveraging services such as AWS CloudTrail, VPC Flow Logs, CloudWatch Logs, and S3 event notifications, organizations can achieve comprehensive visibility without increasing the operational burden of agent management. Real-time streaming integration further enhances SIEM capabilities by enabling continuous ingestion of log data as it is generated. AWS services such as Kinesis Data Firehose or EventBridge can stream data directly into SIEM platforms, ensuring minimal latency between event occurrence and detection (Akinyemi & Ojetunde, 2023, Dosumu, et al., 2023, George, Dosumu & Makata, 2023). This method is especially valuable for dynamic environments with high-volume log generation, such as auto-scaling groups, container orchestration platforms like ECS and EKS, or serverless architectures using AWS Lambda.

Each integration method carries specific benefits and tradeoffs that must be carefully evaluated based on the organization's security objectives, technical expertise, and operational requirements. API ingestion offers a flexible, highly customizable integration model that is relatively easy to maintain, but it may introduce latency depending on polling intervals and can sometimes miss high-frequency events if not properly tuned. Agent-based integration provides deep visibility into system-level activities and custom application telemetry, making it ideal for compliance audits and forensic investigations (Adewumi, et al., 2023, Akinyemi & Oke-Job, 2023, Ibidunni, William & Otokiti, 2023). However, it adds operational complexity by requiring agent deployment, configuration, and lifecycle management, which can be particularly challenging in largescale or ephemeral environments.

Agentless integration offers significant advantages in terms of simplicity, scalability, and reduced maintenance overhead. By using AWS-native logging and event forwarding capabilities, organizations can avoid the challenges associated with agent deployment and maintenance. However, agentless methods might not capture granular details from the operating system or custom applications running on EC2 instances unless additional configurations are applied (Chukwuma-Eke, Ogunsola & Isibor, 2022, Kolade, et al., 2022). Furthermore, reliance on AWS service logs may introduce a dependence on AWS's logging configurations and retention policies, necessitating careful review to ensure compliance with organizational or regulatory requirements.

Real-time streaming integration methods, such as using Amazon Kinesis Data Firehose or EventBridge, deliver major advantages for organizations that require low-latency detection and rapid incident response. By continuously pushing event data to the SIEM system as it occurs, these methods enable near-instantaneous correlation and alerting, supporting proactive threat hunting and accelerated response times (Abimbade, *et al.*, 2017, Aremu, Akinyemi & Babafemi, 2017). However, real-time streaming can significantly increase the volume of data ingested by the SIEM, potentially driving up storage and licensing costs. Organizations must implement intelligent data filtering, transformation, and prioritization strategies to ensure that

only relevant security events are transmitted and stored, balancing performance and cost considerations.

The choice between these integration approaches is often influenced by factors such as the organization's cloud maturity level, regulatory requirements, budgetary constraints, and the diversity of workloads hosted on AWS. For example, highly regulated industries like finance and healthcare may prefer a combination of agent-based and API-driven integrations to ensure comprehensive coverage and meet strict auditability standards. Conversely, organizations focused on rapid scalability and minimal operational overhead may lean toward agentless and real-time streaming integrations, accepting potential limitations in exchange for greater agility (Afolabi, et al., 2023, Akinyemi, 2023, Attah, Ogunsola & Garba, 2023).

Hybrid integration strategies are becoming increasingly common, combining multiple methods to maximize coverage, flexibility, and efficiency. For instance, an organization may use agentless integration for baseline monitoring of cloud-native services, agent-based collection for high-value EC2 workloads, API ingestion for centralized security insights, and real-time streaming for critical security events requiring immediate action. This layered approach ensures a robust and adaptive security monitoring framework that aligns with the dynamic nature of AWS infrastructures (Adedeji, Akinyemi & Aremu, 2019, Akinyemi & Ebimomi, 2020, Otokiti, 2017).

In conclusion, understanding the definition, evolution, and technical approaches to integrating SIEM systems into AWS environments is crucial for achieving effective threat detection and log correlation. Organizations must carefully select and tailor their integration strategies, balancing the depth of visibility, operational complexity, cost implications, and compliance needs (Akinbola, Otokiti & Adegbuyi, 2014, Otokiti-Ilori & Akoredem, 2018). As cloud architectures continue to evolve, future innovations in SIEM integrations, including serverless-native telemetry ingestion, AI-driven event correlation, and intelligent data pipeline optimizations, will further enhance the ability of security teams to protect AWS-based infrastructures against sophisticated cyber threats.

2.4 Effectiveness of SIEM for Threat Detection

The effectiveness of Security Information and Event Management (SIEM) systems in AWS environments has become a critical focus area for organizations aiming to fortify their cloud security strategies. By centralizing and analyzing security-related data from various AWS services and infrastructure components, SIEM systems play a pivotal role in enabling comprehensive threat detection, supporting proactive incident response, and maintaining regulatory compliance (Akinyemi & Ologunada, 2023, Ihekoronye, Akinyemi & Aremu, 2023). In the AWS context, SIEM platforms leverage the extensive telemetry provided by services such as AWS CloudTrail, GuardDuty, VPC Flow Logs, CloudWatch, and Security Hub to uncover hidden threats, detect abnormal behavior, and facilitate early containment actions before adversaries can achieve their objectives.

The core threat detection capabilities enabled by SIEM systems in AWS stem from their ability to correlate vast amounts of diverse event data, identify patterns indicative of malicious activity, and generate high-fidelity security alerts. By ingesting logs from multiple AWS accounts, regions,

and services, SIEM platforms can reconstruct the sequence of actions leading up to a potential security incident, providing security analysts with the contextual information necessary to assess the severity and scope of a threat. Correlation rules and detection logic within the SIEM allow it to link seemingly benign activities into coherent attack narratives (Ajonbadi, et al., 2015, Aremu & Laolu, 2014, Otokiti, 2018). For example, a SIEM can correlate an unusual IAM privilege escalation event with anomalous network connections detected in VPC Flow Logs and abnormal data access patterns recorded by S3 server access logs, thereby revealing a sophisticated insider attack attempt that would be difficult to detect through isolated log analysis.

Another key dimension of SIEM effectiveness lies in the use of techniques for anomaly detection and real-time alerting. Traditional rule-based detection methods, while effective against known threats, often struggle with detecting novel or subtle attack patterns. To address this gap, many modern SIEM systems deployed within AWS infrastructures incorporate advanced anomaly detection techniques. These techniques involve establishing behavioral baselines for users, systems, and applications based on historical activity and identifying deviations from these baselines as potential indicators of compromise (Akinyemi & Oke, 2019, Otokiti & Akinbola 2013). For instance, if an IAM user typically logs in from a specific geographic region during standard business hours but suddenly initiates API requests from a foreign country during odd hours, the SIEM's anomaly detection engine would flag this deviation for further investigation.

Real-time alerting is another cornerstone of effective threat detection. In cloud environments, the speed at which attacks can escalate makes rapid detection and response essential. SIEM platforms achieve real-time alerting by continuously ingesting log streams via integrations with services like Kinesis Data Firehose, EventBridge, and CloudWatch Logs, analyzing events as they occur, and triggering alerts when predefined correlation rules or anomaly thresholds are met. Real-time alerting enables security teams to swiftly investigate suspicious activities, quarantine affected resources, revoke compromised credentials, and contain threats before they cause significant damage (Attah, Ogunsola & Garba, 2022, Babatunde, Okeleke & Ijomah, 2022). Some SIEMs also support automated playbooks that can be invoked upon detection of critical alerts, orchestrating predefined response actions and further reducing mean time to respond (MTTR).

learning and artificial Machine intelligence enhancements have further transformed the threat detection landscape for SIEM systems operating within AWS environments. Traditional SIEM architectures relied heavily on static correlation rules, which, although effective against known threats, were limited in their ability to adapt to the constantly evolving threat landscape (Abimbade, et al., 2022, Aremu, et al., 2022, Oludare, Adeyemi & Otokiti, 2022). AI and machine learning technologies have introduced dynamic threat detection capabilities that allow SIEM systems to learn from historical data, adapt to new attack techniques, and reduce false positives by contextualizing security events more accurately. Machine learning algorithms can identify subtle relationships between different security events that might otherwise be overlooked by rule-based systems, thus enhancing the

ability to detect advanced persistent threats (APTs) and insider threats.

In practice, machine learning models embedded within SIEM platforms analyze features such as login times, API usage patterns, network traffic behavior, and file access characteristics to develop predictive models of normal activity. These models then serve as the basis for detecting deviations that may indicate malicious behavior. For example, if a machine learning model identifies that a particular EC2 instance typically communicates only with a known set of internal services, any sudden outbound connections to suspicious IP addresses would be immediately flagged (Adedoja, et al., 2017, Aremu, et al., 2018, Otokiti, 2012). Furthermore, AI techniques such as natural language processing (NLP) are increasingly used within SIEM systems to interpret and categorize unstructured log data, improving the efficiency of log analysis and threat classification.

Threat intelligence integration is another domain where AI and machine learning substantially enhance SIEM effectiveness. Modern SIEM platforms often integrate threat intelligence feeds from multiple sources, including commercial threat intelligence providers, open-source (OSINT) feeds, and industry-specific intelligence Information Sharing and Analysis Centers (ISACs). Machine learning models assist in dynamically correlating internal security events with external threat indicators, such as known malicious IP addresses, malware signatures, phishing domains, or command-and-control servers (Akinyemi & Aremu, 2017, Famaye, Akinyemi & Aremu, 2020, Otokiti-Ilori, 2018). This integration enables the SIEM to identify and prioritize threats based on their relevance and risk level, reducing the cognitive load on security analysts and enabling them to focus on high-impact incidents.

The growing complexity of AWS environments, with their reliance on serverless computing, container orchestration, and microservices architectures, presents both challenges and opportunities for SIEM systems enhanced by AI and machine learning. On the one hand, the ephemeral and distributed nature of modern cloud workloads complicates traditional log-based monitoring approaches. On the other hand, machine learning models can dynamically adapt to these changing environments by continuously learning new patterns of normal behavior and adjusting detection strategies accordingly (Nwaimo, et al., 2023, Odunaiya, Soyombo & Ogunsola, 2023, Oludare, et al., 2023). For instance, in containerized environments running on Amazon ECS or EKS, machine learning-based SIEMs can track container lifecycle events, network connections, and interservice communications to identify anomalous behavior that may signify container escapes, privilege escalations, or unauthorized deployments.

Despite the substantial improvements brought by machine learning and AI, challenges remain in achieving consistently high effectiveness in SIEM-driven threat detection. One major issue is the risk of model drift, where the characteristics of normal behavior change over time due to legitimate business activities, leading to an increase in false positives or false negatives. Continuous retraining of machine learning models with up-to-date data is essential to mitigate this risk (Ajonbadi, Otokiti & Adebayo, 2016, Otokiti & Akorede, 2018). Additionally, adversaries are increasingly aware of AI-driven defenses and may

deliberately craft attack techniques that mimic legitimate behavior, necessitating the development of more sophisticated detection strategies that incorporate contextaware analysis and adversarial resilience.

Another important consideration is the interpretability of machine learning-driven detections. While complex models such as deep learning neural networks can offer high detection accuracy, they often function as "black boxes" with limited transparency into why a particular event was flagged as malicious. To address this, explainable AI (XAI) techniques are being incorporated into SIEM platforms to provide security analysts with understandable explanations for machine-driven detections, facilitating better trust, validation, and response prioritization (Abimbade, et al., 2023, Ijomah, Okeleke & Babatunde, 2023, Otokiti, 2023). In summary, the effectiveness of SIEM systems in detecting threats within AWS infrastructures is driven by their ability to aggregate diverse data sources, correlate seemingly unrelated events, and deliver actionable insights in near realtime. The integration of advanced anomaly detection techniques, real-time alerting mechanisms, and machine learning-enhanced threat intelligence significantly amplifies the capabilities of SIEM platforms to identify and respond to sophisticated cyber threats (Akinyemi & Ebimomi, 2020). As cloud environments continue to grow in complexity and adversaries become more adept, continuous innovation in AI-driven threat detection and adaptive SIEM architectures will be essential for maintaining resilient security postures in AWS-based infrastructures.

2.5 Log Correlation and Analysis in AWS Context

In the complex and dynamic environment of Amazon Web Services (AWS), the ability to perform effective log correlation and analysis is a cornerstone of building strong security operations. As organizations deploy increasingly sophisticated multi-account and multi-region architectures to enhance resilience and scalability, the importance of centralized visibility into security events becomes paramount. Without effective log correlation across multiple AWS accounts and geographic regions, threats that manifest through distributed and subtle indicators can easily evade detection, resulting in significant security risks. A single malicious event, such as unauthorized credential use, may leave traces scattered across CloudTrail logs in one account, GuardDuty findings in another, and VPC Flow Logs in yet another region. Only by aggregating, correlating, and analyzing these disparate data points can security teams reconstruct the full picture of an attack and respond effectively.

Multi-account strategies, often implemented using AWS Organizations and Control Tower, introduce a level of operational complexity that traditional single-account security models cannot easily accommodate. In these architectures, centralized log aggregation is critical for effective correlation. AWS provides services such as AWS CloudTrail Organization Trails and centralized S3 buckets for log collection, but SIEM systems must be capable of ingesting, normalizing, and correlating this aggregated data at scale (Adetumbi & Owolabi, 2021, Arotiba, Akinyemi & Aremu, 2021). Log correlation across accounts and regions enables the detection of cross-account attacks, lateral movement, and coordinated campaigns that would otherwise remain hidden within isolated silos of telemetry. Moreover, correlating logs from multiple regions is vital for identifying

globally distributed attack patterns, such as credential stuffing attacks that originate from different geographic locations or multi-region data exfiltration attempts targeting diverse workloads.

To enable meaningful correlation across such diverse and voluminous data sets, log normalization and enrichment are essential preprocessing steps. Log normalization involves transforming log data from multiple sources into a standardized format that facilitates consistent parsing, querying, and analysis. AWS services generate logs in varying schemas and formats; for example, CloudTrail produces JSON-based event records, whereas VPC Flow Logs provide network traffic metadata in flat-file formats (Abimbade, et al., 2023, George, Dosumu & Makata, 2023, Lawal, et al., 2023). Without normalization, correlating events across these sources would be error-prone and timeconsuming. SIEM systems typically apply normalization techniques such as field mapping, type casting, timestamp standardization, and schema unification to ensure that events from different services and accounts can be analyzed cohesively. Log enrichment further augments raw security data with additional contextual information that enhances its analytic value. This may include geolocation information based on IP addresses, AWS resource tags, threat intelligence annotations identifying malicious entities, or user attribution metadata linking AWS API calls to specific roles and users within an organization.

Effective enrichment practices allow security analysts to prioritize investigations, perform advanced threat hunting, and understand the broader context surrounding security events. For instance, an anomalous API call to terminate EC2 instances might initially appear benign, but when enriched with context indicating that the action originated from a compromised IAM role associated with an administrative user, its threat level becomes significantly more apparent (Akinbola & Otokiti, 2012). Similarly, enrichment processes that tie network traffic logs to known command-and-control infrastructure flagged by threat intelligence feeds can accelerate detection of active breaches.

However, managing log correlation and analysis in AWS presents significant challenges, especially in high-velocity environments. Cloud-native architectures characterized by their elasticity, ephemeral workloads, and rapid scaling capabilities, resulting in the generation of vast volumes of log data within short timeframes. Auto-scaling groups, serverless functions, container orchestration clusters, and dynamic resource provisioning all contribute to an explosion of telemetry that must be ingested, stored, and analyzed continuously (Nwaimo, Adewumi & Ajiga, 2022, Olufemi-Phillips, et al., 2024, Onesi-Ozigagun, et al., 2024). High-velocity environments strain traditional SIEM systems not only in terms of data ingestion rates but also in terms of storage capacity, processing power, and analytical throughput. SIEM platforms must be architected to scale elastically alongside cloud workloads, using distributed data pipelines and scalable storage solutions such as AWS S3 or Amazon OpenSearch Service to maintain performance under load.

Moreover, high-velocity data environments introduce challenges related to event deduplication, time synchronization, and event ordering. For instance, a security incident involving a lateral movement across multiple EC2 instances may generate thousands of log entries within

milliseconds. Without proper deduplication and accurate timestamp management, SIEM systems may either overwhelm analysts with redundant alerts or misinterpret the sequence of events, leading to inaccurate incident reconstruction (Adelana & Akinyemi, 2021, Esiri, 2021, Odunaiya, Soyombo & Ogunsola, 2021). Strategies such as leveraging AWS CloudTrail Insights for automatic anomaly detection, applying time-windowed aggregation techniques, and deploying streaming analytics engines are increasingly necessary to tame the challenges posed by high-velocity telemetry.

Visualization and dashboarding play a crucial role in making correlated log data accessible and actionable for security analysts. The complexity of AWS environments demands intuitive, dynamic visualizations that allow users to identify patterns, detect anomalies, and track ongoing incidents in real time. Effective dashboards aggregate key security metrics, highlight anomalies, and present threat intelligence overlays that help analysts quickly assess the organization's security posture (Akinyemi & Ebimomi, 2021, Chukwuma-Eke, Ogunsola & Isibor, 2021). Visualizations such as time-series graphs of API activity, geographic heat maps of access attempts, Sankey diagrams illustrating authentication flows, and network topology maps of inter-service communications provide critical situational awareness that raw log entries alone cannot deliver.

Modern SIEM platforms integrate with visualization tools such as Kibana, Splunk Dashboards, and AWS QuickSight to offer customizable and interactive dashboards. Security analysts benefit from features like drill-down capabilities, where clicking on a suspicious event in a dashboard leads to detailed forensic information, facilitating faster triage and deeper investigation. Effective visualization also supports executive reporting, enabling cybersecurity leaders to communicate risks and incident trends to stakeholders in an understandable format (Adepoju, et al., 2021, Ajibola & Olanipekun, 2019, Hussain, et al., 2021). Furthermore, visual correlation of related security events empowers teams to detect complex attack chains, such as initial compromise, privilege escalation, lateral movement, and exfiltration, even if the constituent events occurred across different AWS accounts and services.

Despite advances in visualization technologies, challenges remain in ensuring that dashboards are designed to prioritize actionable information without overwhelming users with noise. Poorly designed dashboards can contribute to alert fatigue, where security analysts are bombarded with too many low-value alerts and lose focus on critical incidents (Afolabi, Ajayi & Olulaja, 2024, Eyo-Udo, *et al.*, 2024, Ogunsola, *et al.*, 2024). Therefore, designing effective visualizations involves careful curation of key performance indicators (KPIs), threat indicators, and anomaly scores, alongside the use of automated alert prioritization and customizable filters.

In summary, effective log correlation and analysis within AWS environments are foundational elements for building robust threat detection and incident response capabilities. The importance of correlating logs across multi-account and multi-region architectures cannot be overstated, given the distributed and dynamic nature of modern cloud deployments. Normalization and enrichment processes are critical for ensuring that diverse security data can be analyzed coherently and meaningfully (Akinyemi & Ogundipe, 2022, Ezekiel & Akinyemi, 2022, Tella&

Akinyemi, 2022). However, organizations must also address the challenges associated with high-velocity log environments, including scaling ingestion pipelines, managing event fidelity, and avoiding analysis bottlenecks. Finally, visualization and dashboarding techniques transform correlated log data into actionable intelligence, enabling faster, more accurate security decision-making. As AWS environments continue to evolve, continuous innovation in correlation strategies, enrichment methodologies, and visualization techniques will be essential to maintaining effective cloud security operations.

2.6 Challenges and Limitations

While the integration of Security Information and Event Management (SIEM) systems into AWS-based infrastructures has significantly enhanced threat detection and security monitoring capabilities, several challenges and limitations persist that complicate full and efficient deployment. One of the foremost challenges relates to scalability and cost management. Traditional SIEM systems were originally designed for relatively static, on-premises environments with predictable data volumes (Adeniran, et al., 2022, Aniebonam, et al., 2022, Otokiti & Onalaja, 2022). AWS cloud environments, by contrast, are inherently dynamic and elastic, generating vast amounts of telemetry data at unpredictable rates due to auto-scaling groups, serverless architectures, and multi-region deployments. As a result, the volume, velocity, and variety of log data ingested into SIEM platforms can increase dramatically in a short period, leading to major scalability concerns.

Scaling a SIEM system to accommodate the data needs of a dynamic AWS environment requires elastic ingestion pipelines, distributed data storage, and high-throughput processing architectures, which are not features that all traditional SIEMs support natively. Even where technical scalability is achievable, it often comes with significant cost implications. SIEM vendors typically charge based on the volume of data ingested, indexed, or stored, meaning that organizations operating large-scale AWS environments may face substantial and rapidly escalating licensing and infrastructure costs (Akinbola, et al., 2020, Akinyemi & Aremu, 2016, Ogundare, Akinyemi & Aremu, 2021). Furthermore, storing logs for extended periods to meet compliance requirements or for forensic investigations can further compound costs. Organizations must therefore balance the need for comprehensive visibility with budgetary constraints, often forcing compromises on log retention durations, the granularity of collected data, or the frequency of correlation queries.

Cost challenges are also amplified by the need to normalize and enrich data before ingestion into SIEM platforms, which requires additional processing layers and sometimes dedicated services such as AWS Lambda functions or Kinesis Data Firehose transformations. These extra services incur additional AWS charges, contributing to the overall cost of maintaining a comprehensive security monitoring and log correlation ecosystem (Adewumi, *et al.*, 2024, Aniebonam, 2024, Ikese, *et al.*, 2024, Ofodile, *et al.*, 2024). Organizations attempting to control these costs must adopt strategies such as intelligent filtering, log deduplication, data compression, and selective ingestion of high-priority events, but these approaches risk missing subtle indicators of compromise if not carefully managed.

Another major limitation in the integration of SIEM systems

with AWS infrastructures involves the gaps in coverage for serverless and containerized environments, such as AWS Lambda, Amazon Elastic Container Service (ECS), and Amazon Elastic Kubernetes Service (EKS). Serverless computing introduces unique visibility challenges because there are no persistent host operating systems to monitor, and execution environments are ephemeral, often existing only for a few milliseconds (Akinyemi & Salami, 2023, Attah, Ogunsola & Garba, 2023, Otokiti, 2023). Traditional SIEM models, which rely heavily on host-based agents or persistent network monitoring, struggle to adapt to these paradigms. Capturing security telemetry from AWS Lambda functions typically requires integrating with CloudWatch Logs or instrumenting functions to emit custom securityrelated metrics, but this approach can be incomplete or miss fine-grained execution details critical for threat detection. Similarly, containerized environments running on ECS or

EKS present their own set of challenges. Containers are lightweight, transient, and often orchestrated at scale, making it difficult to maintain comprehensive visibility without deploying container-aware monitoring solutions. SIEM systems that are not natively designed for container telemetry may lack the ability to correlate events across container lifecycles, microservices communications, and Kubernetes control plane activities (Adisa, Akinyemi & Aremu, 2019, Akinyemi, Ogundipe & Adelana, 2021, Kolade, et al., 2021). Moreover, containerized workloads generate an overwhelming volume of telemetry, requiring security teams to distinguish between benign orchestration noise and meaningful security signals. For example, distinguishing between legitimate Kubernetes API server interactions and malicious privilege escalation attempts within an EKS cluster demands deep contextual understanding that many SIEM platforms are only beginning to develop.

Compounding the coverage challenges in serverless and containerized contexts is the lack of standardized logging schemas across AWS services and workloads. Lambda function logs, container logs, and traditional EC2 instance logs often vary significantly in format and content, complicating normalization, enrichment, and correlation efforts. As a result, security teams must invest considerable effort in creating custom parsers, field mappings, and correlation rules to bridge the visibility gaps and achieve effective monitoring across all layers of their AWS environments (Akinyemi & Ogundipe, 2023, Aniebonam, *et al.*, 2023, George, Dosumu & Makata, 2023).

Beyond scalability and coverage issues, SIEM deployments in AWS also face significant challenges related to data privacy and compliance constraints. Regulations such as the General Data Protection Regulation (GDPR) in Europe and the Health Insurance Portability and Accountability Act (HIPAA) in the United States impose stringent requirements on how personal data and sensitive health information are collected, processed, stored, and transmitted. Since SIEM systems aggregate vast amounts of log data, including potentially sensitive information about users, applications, and network activities, ensuring compliance with these regulations is both critical and complex (Ige, et al., 2022, Ogunyankinnu, et al., 2022).

One primary concern is the inadvertent capture of personally identifiable information (PII) within security logs. For instance, API calls recorded by AWS CloudTrail might contain usernames, email addresses, IP addresses, or other

identifiers that qualify as PII under GDPR. If such logs are ingested into SIEM platforms without appropriate data masking, anonymization, or access controls, organizations risk violating privacy regulations (Adepoju, *et al.*, 2022, Francis Onotole, *et al.*, 2022). Implementing safeguards such as tokenization, encryption at rest and in transit, strict access controls, and role-based access to log data is essential, but it adds to the operational complexity and performance overhead of SIEM systems.

Furthermore, regulations often impose data residency requirements, mandating that certain types of data must remain within specific geographic jurisdictions. In a multiregion AWS architecture where logs are centralized into a global SIEM platform, ensuring compliance with these requirements becomes challenging. Organizations must design architectures that either segregate log data by region or implement fine-grained controls to prevent unauthorized cross-border data flows, which may necessitate deploying regional SIEM instances or utilizing AWS services such as Amazon Macie to detect and classify sensitive data (Adepoju, *et al.*, 2023, Attah, Ogunsola & Garba, 2023, Hussain, *et al.*, 2023).

Compliance auditing also introduces additional burdens. Organizations subject to GDPR, HIPAA, PCI DSS, or other standards must demonstrate that their SIEM integrations maintain data integrity, provide tamper-evident logging, and ensure secure audit trails. Achieving these outcomes demands implementing cryptographic controls such as digital signatures and immutable storage mechanisms like AWS S3 Object Lock. These measures, while enhancing compliance posture, add further cost and architectural complexity to SIEM deployments in AWS environments (Adepoju, *et al.*, 2023, Lawal, *et al.*, 2023, Ugbaja, *et al.*, 2023).

The shared responsibility model in AWS also complicates compliance for SIEM systems. While AWS manages the security of the cloud infrastructure itself, customers remain responsible for securing their applications, data, and configuration of AWS services. Misunderstandings or misapplications of this model can lead to gaps where sensitive log data is improperly exposed or compliance obligations are inadvertently unmet. Thus, maintaining an effective SIEM deployment that satisfies regulatory requirements necessitates not only technical solutions but also robust governance, clear policies, and regular audits.

In summary, while SIEM integration with AWS infrastructures offers powerful capabilities for threat detection and security monitoring, it is not without significant challenges and limitations. Scalability and cost issues demand careful architectural planning and ongoing optimization to prevent budget overruns. Gaps in visibility for serverless and containerized environments require specialized monitoring strategies and advanced telemetry integration to achieve full security coverage (Adepoju, et al., 2023, Hussain, et al., 2023, Ugbaja, et al., 2023). Finally, data privacy and compliance constraints impose stringent requirements on how security data is collected, processed, and stored, mandating strong governance and technical safeguards. As cloud environments continue to grow in scale and complexity, addressing these challenges will be crucial for organizations seeking to maximize the value of their SIEM investments while maintaining robust security postures and regulatory compliance.

2.7 Best Practices for SIEM Deployment in AWS

Implementing a Security Information and Management (SIEM) solution in an AWS environment requires more than simply deploying a tool and ingesting log data. To maximize effectiveness and minimize operational costs, organizations must follow best practices that address the unique characteristics of AWS infrastructure. Architecting efficient and cost-effective SIEM integrations begins with designing for scalability, selective data ingestion, and intelligent event prioritization (Ige, et al., 2022, Ogunyankinnu, et al., 2022). Given the volume and velocity of data generated in cloud-native architectures, indiscriminate ingestion of all logs into the SIEM platform can quickly lead to overwhelming costs and performance bottlenecks. Organizations should adopt a strategic approach, identifying critical log sources necessary for security visibility—such as AWS CloudTrail, GuardDuty findings, VPC Flow Logs, AWS Config, and key application logs—while deprioritizing or sampling less critical telemetry.

An effective practice involves setting up a centralized logging architecture using Amazon S3 buckets, AWS Kinesis Data Firehose, or AWS CloudWatch Logs to aggregate, preprocess, and selectively forward securityrelevant events to the SIEM platform. Pre-processing pipelines can include normalization, enrichment, and deduplication stages, reducing the ingestion volume and enhancing the analytical value of the logs that are ultimately stored in the SIEM (Adepoju, et al., 2022, Francis Onotole, et al., 2022). Additionally, organizations should implement tiered storage strategies, retaining high-value log data in primary SIEM storage for rapid access while offloading older or lower-priority data to cost-efficient archival storage solutions such as Amazon S3 Glacier. Cost forecasting, budgeting for log growth, and continuously monitoring ingestion patterns are crucial elements for keeping SIEM operations sustainable over time.

Leveraging AWS-native services alongside third-party SIEM platforms is another best practice that allows organizations to optimize visibility while maintaining operational agility. AWS provides an array of powerful security services that can complement and augment third-party SIEM solutions. For instance, Amazon GuardDuty delivers intelligent threat detection based on machine learning and threat intelligence feeds and can generate findings that are natively consumable by most SIEM platforms (Adepoju, *et al.*, 2023, Attah, Ogunsola & Garba, 2023, Hussain, *et al.*, 2023). AWS Security Hub aggregates security alerts across multiple AWS accounts and services, offering a consolidated view of security posture that can be forwarded to a SIEM for deeper analysis and cross-correlation with on-premises or multi-cloud telemetry.

Integrating Amazon Macie for sensitive data discovery, AWS Inspector for vulnerability management, and AWS CloudTrail Lake for advanced audit event analytics can further enhance the effectiveness of a SIEM solution without unnecessarily replicating functionality. These services allow organizations to maintain a layered security model where AWS-native capabilities provide continuous monitoring and alerting, while the SIEM platform focuses on advanced correlation, incident investigation, forensic analysis, and long-term compliance reporting (Adepoju, et al., 2023, Lawal, et al., 2023, Ugbaja, et al., 2023). This

division of labor reduces the ingestion burden on the SIEM and improves the overall return on investment by ensuring that only enriched, high-fidelity security events are escalated for centralized analysis.

Continuous tuning and alert optimization are essential practices for maintaining an effective SIEM deployment in AWS. The dynamic nature of cloud environments, characterized by frequent infrastructure changes, new service adoptions, and evolving threat landscapes, necessitates regular tuning of detection rules, correlation logic, and alert thresholds. Without such tuning, SIEM platforms can quickly devolve into sources of alert fatigue, inundating security operations teams with large volumes of false positives and low-priority notifications that obscure genuine threats (Adepoju, et al., 2023, Hussain, et al., 2023, Ugbaja, et al., 2023). Organizations must implement a feedback-driven process where alerts are continuously evaluated for accuracy, relevance, and actionability.

Key strategies for tuning include implementing dynamic baselining, where the SIEM continuously learns normal patterns of activity and adjusts anomaly detection thresholds accordingly, and applying contextual enrichment to alerts to provide immediate insights into severity and potential impact. It is also recommended to establish an alert prioritization framework that categorizes incidents based on risk, business criticality, and compliance obligations, ensuring that high-severity alerts are triaged and addressed with urgency (Akinyemi & Ebiseni, 2020, Austin-Gabriel, et al., 2021, Dare, et al., 2019). SIEM tuning should be treated as an ongoing operational process, with scheduled reviews aligned to change management activities, architectural updates, and threat landscape assessments.

Alignment with established security standards such as the National Institute of Standards and Technology (NIST) Cybersecurity Framework (CSF), the Center for Internet Security (CIS) AWS Foundations Benchmark, and the International Organization for Standardization (ISO) 27001 provides a strong foundation for building and maintaining robust SIEM integrations in AWS environments. These frameworks offer structured, industry-validated guidance on essential security controls, incident response processes, and monitoring practices, helping organizations systematically improve their cloud security postures and SIEM effectiveness.

The NIST CSF emphasizes core functions such as Identify, Protect, Detect, Respond, and Recover, all of which align directly with SIEM capabilities. By mapping SIEM use cases to these functions, organizations can ensure comprehensive security coverage (Adeniran, Akinyemi & Aremu, 2016, Ilori & Olanipekun, 2020, James, et al., 2019). For example, using SIEMs to monitor IAM changes supports the Identify and Protect functions, while correlation of GuardDuty findings aligns with Detect, and automated incident response playbooks connect with Respond and Recover. Regularly reviewing SIEM rules and coverage against NIST CSF guidelines ensures that the security monitoring program evolves alongside business and technology changes.

Similarly, the CIS AWS Foundations Benchmark provides prescriptive best practices for securing AWS environments, including controls such as enabling CloudTrail in all regions, configuring log metric filters and alarms, and restricting public access to S3 buckets. A well-integrated SIEM platform should continuously validate compliance

with these controls, flagging deviations and facilitating rapid remediation (Akinyemi & Ezekiel, 2022, Attah, *et al.*, 2022). CIS-aligned dashboards and reporting templates within the SIEM can streamline compliance audits, reduce manual effort, and demonstrate security posture improvements over time.

ISO 27001, as an international standard for information security management systems (ISMS), adds another layer of governance and operational rigor to SIEM deployments. SIEM integration aligned with ISO 27001 principles ensures that log collection, monitoring, and analysis processes are embedded into broader organizational security policies, risk management frameworks, and continuous improvement initiatives. Organizations pursuing ISO 27001 certification can leverage their SIEM systems as central evidence repositories, showcasing systematic risk identification, incident management, and audit trail maintenance (Akinyemi & Abimbade, 2019, Lawal, Ajonbadi & Otokiti, 2014, Olanipekun & Ayotola, 2019).

Collectively, aligning SIEM practices with these frameworks not only strengthens security effectiveness but also enhances organizational credibility with stakeholders, partners, regulators, and customers. It demonstrates a proactive commitment to security governance, risk management, and compliance, crucial in sectors such as finance, healthcare, and critical infrastructure where regulatory scrutiny is particularly high.

In conclusion, best practices for SIEM deployment in AWS center around designing scalable, cost-effective ingestion architectures, leveraging AWS-native security services to complement third-party SIEM platforms, continuously tuning detection and alerting mechanisms, and aligning operations with established security frameworks such as NIST CSF, CIS AWS Foundations Benchmark, and ISO 27001. Organizations that follow these best practices can achieve high-fidelity threat detection, efficient incident response, sustainable cost models, and strong compliance postures, ensuring that their AWS environments remain resilient against a constantly evolving threat landscape (Chukwuma-Eke, Ogunsola & Isibor, 2022, Olojede & Akinyemi, 2022). As cloud adoption accelerates and cybersecurity threats grow more sophisticated, adherence to these practices will be essential for maintaining effective and future-proof SIEM operations in AWS infrastructures.

2.8 Future Research Directions

As cloud computing environments such as AWS continue to evolve rapidly, the integration of Security Information and Event Management (SIEM) systems faces new challenges and opportunities that demand advanced research and innovation. Traditional SIEM models, although effective in many scenarios, are increasingly stretched by the dynamic, elastic, and ephemeral nature of modern cloud-native architectures. One promising area for future research involves the development of adaptive, AI-driven SIEM models specifically tailored for cloud-native security (Ajonbadi, et al., 2014, Lawal, Ajonbadi & Otokiti, 2014). Unlike traditional systems that rely heavily on static correlation rules and manual tuning, adaptive SIEMs would leverage artificial intelligence and machine learning to autonomously learn from environment-specific telemetry, adjusting detection strategies dynamically as cloud resources and behaviors change. Such models could automatically baseline normal user and system behavior in

serverless environments, adapt to new services or configurations without human intervention, and continuously refine anomaly detection algorithms based on evolving threat intelligence and operational data.

An AI-driven SIEM for AWS environments would also benefit from incorporating reinforcement learning, where models improve over time by receiving feedback from security analysts' responses to alerts. For instance, if analysts consistently dismiss certain types of alerts as false positives, the system could learn to deprioritize similar future events, while promoting new alert patterns that correlate with true incidents. Furthermore, future SIEM models could integrate natural language processing (NLP) capabilities to interpret unstructured log data, incident reports, and threat intelligence feeds, enhancing their ability to detect complex multi-stage attack chains that span across API calls, authentication attempts, and network anomalies (Akinyemi, 2013, Nwabekee, et al., 2021, Odunaiya, Soyombo & Ogunsola, 2021). The potential of AI to revolutionize SIEM functionality in the cloud is immense, but realizing this potential will require extensive research into explainable AI (XAI) to ensure that automated detections and decisions remain transparent understandable to human operators.

Another critical direction for future research involves innovations in log correlation specifically optimized for serverless and microservices architectures. The rise of AWS Lambda, ECS, EKS, Fargate, and API Gateway has introduced new monitoring and correlation challenges, as traditional host-centric models of logging and event analysis are ill-suited for these decentralized, transient workloads. Research is needed to develop correlation frameworks that can map ephemeral execution contexts, such as a single AWS Lambda invocation or a short-lived container, to persistent identities, risk profiles, and attack narratives (Akinyemi & Oke-Job, 2023, Austin-Gabriel, et al., 2023, Chukwuma-Eke, Ogunsola & Isibor, 2023). This would involve designing new metadata tagging strategies at the point of log generation, enabling SIEM platforms to trace causality and lineage between distributed microservices interactions across thousands or millions of events.

Future innovations could include event tracing technologies that extend AWS X-Ray-like telemetry into the security monitoring domain, allowing SIEM systems to visualize and analyze entire serverless application workflows in real time for signs of compromise or deviation from expected behaviors. Context-aware correlation engines that can differentiate between legitimate operational bursts—such as an auto-scaling event during a product launch-and suspicious patterns such as a sudden spike in privilege escalations would greatly enhance the signal-to-noise ratio in SIEM outputs. Furthermore, correlating logs across hybrid environments, where serverless workloads in AWS interact with traditional on-premises or multi-cloud systems, presents a formidable but important research frontier (Akinyemi, 2018, Olaiya, Akinyemi & Aremu, 2017, Olufemi-Phillips, et al., 2020). Future frameworks must facilitate seamless integration of disparate telemetry sources, standardize event formats across services and vendors, and dynamically construct attack timelines that span diverse execution environments.

Cost and performance optimization techniques for SIEM operations in AWS represent another area where substantial research is urgently needed. As discussed previously,

traditional SIEM pricing models based on data ingestion and storage volumes are increasingly misaligned with the realities of high-velocity cloud environments. Research efforts could focus on developing intelligent data tiering strategies, where only security-critical or anomaly-tagged events are retained in high-cost, low-latency SIEM storage, while benign or low-priority events are archived in cost-efficient object storage solutions like Amazon S3 Glacier Deep Archive (Ajonbadi, et al., 2015, Akinyemi & Ojetunde, 2020, Olanipekun, 2020, Otokiti, 2017). Machine learning algorithms could assist in real-time classification of log events based on risk scores, relevance to known threat models, or compliance requirements, optimizing both storage utilization and analyst focus.

Additionally, edge processing paradigms could be explored, wherein initial event analysis, correlation, and enrichment are performed close to the data source using AWS services like Lambda@Edge or lightweight container-based analytics pipelines, thus reducing the volume of raw data that needs to be transmitted to central SIEM repositories. Such an approach could significantly lower data egress costs, reduce latency in detection pipelines, and improve the scalability of SIEM deployments (Abimbade, et al., 2016, Akinyemi & Ojetunde, 2019, Olanipekun, Ilori & Ibitoye, 2020). Research into streamlining SIEM query performance optimizations, dynamic schema through indexing machine learning-driven adjustments, and acceleration could further contribute to ensuring that largescale AWS SIEM deployments remain performant and responsive even as data volumes continue to grow exponentially.

Serverless SIEM architectures, where the core SIEM functions themselves-such as ingestion, correlation, alerting, and visualization—are distributed across AWS serverless services like Lambda, Step Functions, DynamoDB, and Athena, present a particularly interesting research opportunity. Such architectures could offer unprecedented scalability and cost efficiency by allowing SIEM processing to elastically scale in response to actual event loads, while minimizing idle resource costs associated with traditional server-based SIEM deployments (Aina, et al., 2023, Dosumu, et al., 2023, Odunaiya, Soyombo & Ogunsola, 2023). However, realizing serverless SIEM models requires overcoming significant technical hurdles, including cold start latencies, inter-service integration complexity, and new models of ensuring data consistency and transaction integrity across stateless compute functions. Another cost optimization area deserving research attention is the selective integration of AWS-native services and third-party SIEMs. Instead of ingesting raw logs directly into expensive SIEM platforms, organizations could use AWS-native analytics tools such as CloudTrail Lake, CloudWatch Logs Insights, and Athena to perform firstlevel filtering and enrichment, forwarding only highconfidence findings into the SIEM. Research could evaluate the trade-offs between detection latency, depth of analysis, and operational cost across different hybrid architectures combining native AWS capabilities and third-party SIEM solutions (Akinyemi, Adelana & Olurinola, 2022, Ibidunni, et al., 2022, Otokiti, et al., 2022).

Furthermore, future research should also explore the regulatory and ethical dimensions of AI-driven SIEM in cloud environments. As more detection and response decisions become automated, it is essential to ensure that

privacy, fairness, and accountability considerations are built into the underlying algorithms. Research into privacy-preserving security analytics, where sensitive data is monitored for threats without compromising confidentiality, could be vital for balancing security and compliance objectives in industries such as healthcare, finance, and critical infrastructure (Chukwuma-Eke, Ogunsola & Isibor, 2022, Muibi & Akinyemi, 2022).

Finally, resilience and adversarial resistance of AI-driven SIEM models must be a major research focus. Attackers will increasingly attempt to poison machine learning models by injecting misleading data, causing evasion of detection or triggering false alarms. Research into robust learning techniques, adversarial training, and detection of model drift will be critical to ensure that next-generation SIEM systems remain trustworthy and effective even in hostile operational environments (Akinyemi & Aremu, 2010, Nwabekee, *et al.*, 2021, Otokiti & Onalaja, 2021).

In conclusion, the future of SIEM integration in AWS-based infrastructures hinges on advances across multiple dimensions: the development of adaptive, AI-driven SIEM models tailored for dynamic cloud environments; innovations in log correlation methods suited for serverless and microservices architectures; and breakthrough cost and performance optimization strategies that make large-scale SIEM operations sustainable and efficient (Adediran, *et al.*, 2022, Babatunde, Okeleke & Ijomah, 2022). By addressing these research challenges, the cybersecurity community can equip organizations with the tools needed to maintain strong, proactive defenses in increasingly complex and fast-evolving AWS ecosystems.

2.9 Conclusion

The systematic review of SIEM integration for threat detection and log correlation in AWS-based infrastructure has illuminated the critical role that SIEM systems play in maintaining security, compliance, and operational resilience within cloud environments. Through a comprehensive analysis, this review has highlighted how SIEM platforms empower organizations to aggregate disparate security logs, detect complex threats through correlation and anomaly analysis, and enable rapid incident response by providing real-time visibility across dynamic AWS deployments. Key findings demonstrate that while AWS offers a rich set of native security services such as GuardDuty, CloudTrail, Security Hub, and CloudWatch, the integration of these services into centralized SIEM architectures significantly enhances the ability to perform deep analytics, advanced threat hunting, and compliance reporting. Furthermore, it was observed that effective SIEM integration requires addressing significant challenges related to scalability, cost management, visibility gaps in serverless and containerized environments, and data privacy constraints imposed by regulations like GDPR and HIPAA.

For cybersecurity practitioners and cloud architects, these findings underscore the necessity of adopting a strategic, architecture-aware approach to SIEM deployment in AWS environments. It is not sufficient to merely forward all logs into a SIEM platform; rather, successful security operations depend on intelligent data selection, normalization, enrichment, and prioritization to manage costs and enhance detection fidelity. Cloud architects must design centralized, scalable log aggregation pipelines using services like S3, Kinesis, and CloudWatch, while cybersecurity teams must

continuously tune detection rules and leverage AWS-native threat intelligence sources to optimize threat coverage. Practitioners must also be acutely aware of the limitations in monitoring serverless and microservices workloads, adopting specialized telemetry strategies that capture ephemeral execution behaviors and trace distributed system interactions. Importantly, aligning SIEM practices with established frameworks such as the NIST Cybersecurity Framework, CIS AWS Foundations Benchmark, and ISO 27001 ensures that security monitoring programs are not only operationally effective but also auditable and compliant with industry best practices.

Based on the findings of this review, several final recommendations are proposed to guide effective SIEM integration in AWS-based infrastructures. Organizations should architect scalable, cost-optimized ingestion and architectures that balance visibility sustainability, employing preprocessing and intelligent event filtering to manage high-velocity data streams. They should leverage AWS-native security services in tandem with thirdparty SIEM solutions to maximize coverage while minimizing unnecessary duplication of functionality. Continuous tuning of detection logic and alert prioritization must be institutionalized as a core operational process, adapting security monitoring to evolving cloud environments and threat landscapes. Furthermore, investment in AI-driven, adaptive SIEM models that can autonomously learn and adjust to cloud dynamics will be essential for future-proofing security operations. As AWS environments grow increasingly complex and as adversaries become more sophisticated, a disciplined, strategic, and forward-looking approach to SIEM integration will be critical for maintaining robust cloud security postures and ensuring the trust and resilience of digital enterprises.

3. References

- 1. Abimbade D, Akinyemi AL, Obideyi E, Olubusayo F. Use of web analytic in open and distance learning in the University of Ibadan, Nigeria. African Journal of Theory and Practice of Educational Research (AJTPER). 2016; 3.
- 2. Abimbade OA, Akinyemi AL, Olaniyi OA, Ogundipe T. Effect of mnemonic instructional strategy on achievement in English language among junior secondary students in Oyo State, Nigeria. Journal of Educational Media and Technology. 2023; 28(1):1-8. Wisradi Publishers.
- 3. Abimbade OA, Olasunkanmi IA, Akinyemi LA, Lawani EO. Effects of two modes of digital storytelling instructional strategy on pupils' achievement in social studies. TechTrends. 2023; 67(3):498-507.
- 4. Abimbade O, Akinyemi A, Bello L, Mohammed H. Comparative Effects of an Individualized Computer-Based Instruction and a Modified Conventional Strategy on Students' Academic Achievement in Organic Chemistry. Journal of Positive Psychology and Counseling. 2017; 1(2):1-19.
- Abimbade O, Olurinola OD, Akinyemi AL, Adepoju OD, Aina SAO. Spirituality and prosocial behavior: The influence of prosocial media and empathy. In Proceedings of the American Educational Research Association (AERA) Annual Meeting (San Diego, California, USA), 2022.
- 6. Adedeji AS, Akinyemi AL, Aremu A. Effects of

- gamification on senior secondary school one students' motivation and achievement in Physics in Ayedaade Local Government Area of Osun State. In Research on contemporary issues in Media Resources and Information and Communication Technology Use. BOGA Press, 2019, 501-519.
- Adediran EM, Aremu A, Amosun PAA, Akinyemi AL.
 The impacts of two modes of video-based instructional packages on the teaching skills of social studies preservice teachers in South-Western Nigeria. Journal of Educational Media and Technology. 2022; 27(1-2):38-50. Nigeria Association for Educational Media and Technology.
- 8. Adedoja G, Abimbade O, Akinyemi A, Bello L. Discovering the power of mentoring using online collaborative technologies. Advancing Education through Technology, 2017, 261-281.
- 9. Adelana OP, Akinyemi AL. Artificial intelligence-based tutoring systems utilization for learning: A survey of senior secondary students'awareness and readiness in ijebu-ode, ogun state. UNIZIK Journal of Educational Research and Policy Studies. 2021; 9:16-28.
- Adeniran BI, Akinyemi AL, Aremu A. The effect of Webquest on civic education of junior secondary school students in Nigeria. In Proceedings of INCEDI 2016 Conference 29th-31st August, 2016, 109-120.
- 11. Adeniran BI, Akinyemi AL, Morakinyo DA, Aremu A. The effect of Webquest on civic education of junior secondary school students in Nigeria. Bilingual Journal of Multidisciplinary Studies (BJMS). 2022; 5:296-317. The institutbilingue libre du togo.
- Adepoju PA, Adeoye N, Hussain Y, Austin-Gabriel B, Ige B. Geospatial AI and data analytics for satellitebased disaster prediction and risk assessment. Open Access Research Journal of Engineering and Technology. 2023; 4(2):58-66. Doi: https://doi.org/10.53022/oarjet.2023.4.2.0058
- Adepoju PA, Austin-Gabriel B, Hussain NY, Ige AB, Afolabi AI. Natural language processing frameworks for real-time decision-making in cybersecurity and business analytics. International Journal of Science and Technology Research Archive. 2023; 4(2):86-95. Doi: https://doi.org/10.53771/ijstra.2023.4.2.0018
- 14. Adepoju PA, Austin-Gabriel B, Hussain Y, Ige B, Amoo OO, Adeoye N. Advancing zero trust architecture with AI and data science for, 2021.
- 15. Adepoju PA, Austin-Gabriel B, Ige B, Hussain Y, Amoo OO, Adeoye N. Machine learning innovations for enhancing quantum-resistant cryptographic protocols in secure communication. Open Access Research Journal of Multidisciplinary Studies. 2022; 4(1):131-139. Doi: https://doi.org/10.53022/oarjms.2022.4.1.0075
- Adepoju PA, Hussain Y, Austin-Gabriel B, Ige B, Amoo OO, Adeoye N. Generative AI advances for datadriven insights in IoT, cloud technologies, and big data challenges. Open Access Research Journal of Multidisciplinary Studies. 2023; 6(1):51-59. Doi: https://doi.org/10.53022/oarjms.2023.6.1.0040
- 17. Adetunmbi LA, Owolabi PA. Online Learning and Mental Stress During the Covid-19 Pandemic Lockdown: Implication for Undergraduates'mental well-being. Unilorin Journal of Lifelong Education. 2021; 5(1):148-163.

- 18. Adewumi A, Nwaimo CS, Ajiga D, Agho MO, Iwe KA. AI and data analytics for sustainability: A strategic framework for risk management in energy and business. International Journal of Science and Research Archive. 2023; 3(12):767-773.
- 19. Adisa IO, Akinyemi AL, Aremu A. West African Journal of Education. West African Journal of Education. 2019; 39:51-64.
- Afolabi AI, Hussain NY, Austin-Gabriel B, Ige AB, Adepoju PA. Geospatial AI and data analytics for satellite-based disaster prediction and risk assessment. Open Access Research Journal of Engineering and Technology. 2023; 4(2):58-66.
- 21. Aina SA, Akinyemi AL, Olurinola O, Aina MA, Oyeniran O. The influences of feeling of preparedness, mentors, and mindsets on preservice teachers' value of teaching practice. Psychology. 2023; 14(5):687-708.
- 22. Ajibola KA, Olanipekun BA. Effect of access to finance on entrepreneurial growth and development in Nigeria among "YOU WIN" beneficiaries in SouthWest, Nigeria. Ife Journal of Entrepreneurship and Business Management. 2019; 3(1):134-149.
- 23. Ajonbadi HA, Lawal AA, Badmus DA, Otokiti BO. Financial Control and Organisational Performance of the Nigerian Small and Medium Enterprises (SMEs): A Catalyst for Economic Growth. American Journal of Business, Economics and Management. 2014; 2(2):135-143.
- 24. Ajonbadi HA, Mojeed-Sanni BA, Otokiti BO. Sustaining competitive advantage in medium-sized enterprises (MEs) through employee social interaction and helping behaviours. Journal of Small Business and Entrepreneurship. 2015; 3(2):1-16.
- 25. Ajonbadi HA, Mojeed-Sanni BA, Otokiti BO. Sustaining Competitive Advantage in Medium-sized Enterprises (MEs) through Employee Social Interaction and Helping Behaviours. Business and Economic Research Journal. 2015; 36(4).
- 26. Ajonbadi HA, Otokiti BO, Adebayo P. The Efficacy of Planning on Organisational Performance in the Nigeria SMEs. European Journal of Business and Management. 2016; 24(3).
- 27. Akinbola OA, Otokiti BO. Effects of lease options as a source of finance on profitability performance of small and medium enterprises (SMEs) in Lagos State, Nigeria. International Journal of Economic Development Research and Investment, Dec 2012; 3(3).
- 28. Akinbola OA, Otokiti BO, Akinbola OS, Sanni SA. Nexus of Born Global Entrepreneurship Firms and Economic Development in Nigeria. Ekonomicko-Manazerskespektrum. 2020; 14(1):52-64.
- 29. Akinbola OA, Otokiti BO, Adegbuyi OA. Market Based Capabilities and Results: Inference for Telecommunication Service Businesses in Nigeria, The European Journal of Business and Social Sciences. 2014; 12(1).
- Akinyemi AL. Development and Utilisation of an Instructional Programme for Impacting Competence in Language of Graphics Orientation (LOGO) at Primary School Level in Ibadan, Nigeria (Doctoral dissertation), 2013.
- 31. Akinyemi AL. Computer programming integration into primary education: Implication for teachers. In Proceedings of STAN Conference, organized by

- Science Teachers Association of Nigeria, Oyo State Branch, 2018, 216-225.
- 32. Akinyemi AL. Teachers' Educational Media Competence in the Teaching of English Language in Preprimary and Primary Schools in Ibadan North Local Government Area, Nigeria. Journal of Emerging Trends in Educational Research and Policy Studies. 2022; 13(1):15-23.
- 33. Akinyemi AL. Perception and attitudes of secondary school science teachers towards robotics integration in the teaching and learning process. Journal of Science, Mathematics and Technology Education. 2023; 4:140-150. Department of Science and Technology Education, University of Ibadan.
- 34. Akinyemi AL, Abimbade OA. Attitude of secondary school teachers to technology usage and the way forward. In Africa and Education, 2030 Agenda. Gab Educ. Press, 2019, 409-420.
- 35. Akinyemi AL, Aremu A. Integrating LOGO programming into Nigerian primary school curriculum. Journal of Children-in-Science and Technology. 2010; 6(1):24-34.
- 36. Akinyemi AL, Aremu A. LOGO usage and the perceptions of primary school teachers in Oyo State, Nigeria. In Proceedings of the International Conference on Education Development and Innovation (INCEDI), Methodist University College, Accra, Ghana, 2016, 455-462.
- 37. Akinyemi AL, Aremu A. Challenges of teaching computer programming in Nigerian primary schools. African Journal of Education Research (AJER). 2017; 21(1-2):118-124.
- 38. Akinyemi AL, Ebimomi OE. Effects of video-based instructional strategy (VBIS) on students' achievement in computer programming among secondary school students in Lagos State, Nigeria. West African Journal of Open & Flexible Learning. 2020; 9(1):123-125. WAJOFEL.
- 39. Akinyemi AL, Ebimomi OE. Influence of Gender on Students' Learning Outcomes in Computer Studies. Education Technology, 2020.
- 40. Akinyemi AL, Ebimomi OE. Influence of gender on students' learning outcomes in computer programming in Lagos State junior secondary schools. East African Journal of Educational Research and Policy. 2021; 16:191-204. Higher Education Research and Policy Network (HERPNET).
- Akinyemi AL, Ebiseni EO. Effects of Video-Based Instructional Strategy (VBIS) on Junior Secondary School Students' Achievement in Computer Programming in Lagos State, Nigeria. West African Journal of Open and Flexible Learning. 2020; 9(1):123-136.
- 42. Akinyemi AL, Ezekiel OB. University of Ibadan Lecturers' Perception of the Utilisation of Artificial Intelligence in Education. Journal of Emerging Trends in Educational Research and Policy Studies. 2022; 13(4):124-131.
- 43. Akinyemi AL, Ogundipe T. Effects of Scratch programming language on students' attitude towards geometry in Oyo State, Nigeria. In Innovation in the 21st Century: Resetting the Disruptive Educational System. Aku Graphics Press, Uniport Choba, P, 2022, 354-361.

- 44. Akinyemi AL, Ogundipe T. Impact of Experiential Learning Strategy on Senior Secondary Students' Achievement in Hypertext Markup Language (HTML) In Oyo State, Nigeria. Nigerian Open, Distance and e-Learning Journal (NODeLJ). 2023; 1:65-74.
- 45. Akinyemi AL, Ojetunde SM. Techno-pedagogical models and influence of adoption of remote learning platforms on classical variables of education inequality during COVID-19 Pandemic in Africa. Journal of Positive Psychology and Counselling. 2020; 7(1):12-27.
- 46. Akinyemi AL, Ojetunde SM. Modeling Higher Institutions' Response to the Adoption of Online Teaching-Learning Platforms Teaching in Nigeria. Nigerian Open, Distance and e-Learning Journal (NODeLJ). 2023; 1:1-12.
- 47. Akinyemi AL, Oke AE. The use of online resources for teaching and learning: Teachers' perspectives in Egbeda Local Government Area, Oyo State. Ibadan Journal of Educational Studies. 2019; 16(1-2).
- 48. Akinyemi AL, Oke-Job MD. Effect of flipped learning on students' academic achievement in computer studies. The Journal of Positive Psychology and Counselling. 2023; 12(1):37-48. Retrieved from: https://ppacjournals.org/journal/volume-12-issue-1
- 49. Akinyemi AL, Oke-Job MD. The impact of flipped learning on students' level of engagement in computer studies classroom, in Oyo State, Nigeria. African Multidisciplinary Journal of Development (AMJD). 2023; 12(2):168-176.
- 50. Akinyemi AL, Ologunada TM. Perceptions of Teachers and Students On the Use of Interactive Learning Instructional Package (ILIP) in Nigeria Senior Secondary Schools in Ondo State, Nigeria. West African Journal of Open and Flexible Learning. 2023; 11(2):45-72.
- 51. Akinyemi AL, Salami IA. Efficacy of Logo Instructional Package on Digital Competency Skills of Lower Primary School in Oyo State, Nigeria. Unilorin Journal of Lifelong Education. 2023; 7(1):116-131.
- 52. Akinyemi AL, Adelana OP, Olurinola OD. Use of infographics as teaching and learning tools: Survey of pre-service teachers' knowledge and readiness in a Nigerian university. Journal of ICT in Education. 2022; 9(1):117-130.
- 53. Akinyemi AL, Ogundipe T, Adelana OP. Effect of scratch programming language (SPL) on achievement in Geometry among senior secondary students in Ibadan, Nigeria. Journal of ICT in Education. 2021; 8(2):24-33.
- 54. Akinyemi A, Ojetunde SM. Comparative analysis of networking and e-readiness of some African and developed countries. Journal of Emerging Trends in Educational Research and Policy Studies. 2019; 10(2):82-90.
- 55. Akinyemi LA, Ologunada. Impacts of interactive learning instructional package on secondary school students' academic achievement in basic programming. Ibadan Journal of Educational Studies (IJES). 2022; 19(2):67-74. A Publication of Faculty of Education, University of Ibadan, Nigeria.
- 56. Aniebonam EE, Nwabekee US, Ogunsola OY, Elumilade OO. International Journal of Management and Organizational Research, 2022.
- 57. Aniebonam EE, Chukwuba K, Emeka N, Taylor G.

- Transformational leadership and transactional leadership styles: Systematic review of literature. International Journal of Applied Research. 2023; 9(1):7-15.
- 58. Aremu A, Laolu AA. Language of graphics orientation (LOGO) competencies of Nigerian primary school children: Experiences from the field. Journal of Educational Research and Reviews. 2014; 2(4):53-60.
- Aremu A, Adedoja S, Akinyemi A, Abimbade AO, Olasunkanmi IA. An overview of educational technology unit, Department of science and technology education, Faculty of education, University of Ibadan, 2018.
- 60. Aremu A, Akinyemi AL, Babafemi E. Gaming approach: A solution to mastering basic concepts of building construction in technical and vocational education in Nigeria. In Advancing Education Through Technology. Ibadan His Lineage Publishing House, 2017, 659-676.
- 61. Aremu A, Akinyemi LA, Olasunkanmi IA, Ogundipe T. Raising the standards/quality of UBE teachers through technologymediated strategies and resources. Emerging perspectives on Universal basic education. A book of readings on Basic Education in Nigeria, 2022, 139-149.
- 62. Arotiba OO, Akinyemi AL, Aremu A. Teachers' perception on the use of online learning during the Covid-19 pandemic in secondary schools in Lagos, Nigeria. Journal of Education and Training Technology (JETT). 2021; 10(3):1-10. Published by AKU GRAPHICS, University of Port Harcourt Shopping Complex, Choba Campus, University of Port Harcourt.
- 63. Attah JO, Mbakuuv SH, Ayange CD, Achive GW, Onoja VS, Kaya PB, *et al.* Comparative Recovery of Cellulose Pulp from Selected Agricultural Wastes in Nigeria to Mitigate Deforestation for Paper. European Journal of Material Science. 2022; 10(1):23-36.
- 64. Attah RU, Ogunsola OY, Garba BMP. The Future of Energy and Technology Management: Innovations, Data-Driven Insights, and Smart Solutions Development. International Journal of Science and Technology Research Archive. 2022; 3(2):281-296.
- 65. Attah RU, Ogunsola OY, Garba BMP. Advances in Sustainable Business Strategies: Energy Efficiency, Digital Innovation, and Net-Zero Corporate Transformation. Iconic Research and Engineering Journals. 2023; 6(7):450-469.
- 66. Attah RU, Ogunsola OY, Garba BMP. Leadership in the Digital Age: Emerging Trends in Business Strategy, Innovation, and Technology Integration. Iconic Research and Engineering Journals. 2023; 6(9):389-411.
- 67. Attah RU, Ogunsola OY, Garba BMP. Revolutionizing Logistics with Artificial Intelligence: Breakthroughs in Automation, Analytics, and Operational Excellence. Iconic Research and Engineering Journals. 2023; 6(12):1471-1493.
- 68. Austin-Gabriel B, Hussain NY, Ige AB, Adepoju PA, Afolabi AI. Natural language processing frameworks for real-time decision-making in cybersecurity and business analytics. International Journal of Science and Technology Research Archive. 2023; 4(2):86-95.
- 69. Austin-Gabriel B, Hussain NY, Ige AB, Adepoju PA, Amoo OO, Afolabi AI. Advancing zero trust architecture with AI and data science for enterprise

- cybersecurity frameworks. Open Access Research Journal of Engineering and Technology. 2021; 1(1):47-55. Doi: https://doi.org/10.53022/oarjet.2021.1.1.0107
- 70. Babatunde SO, Okeleke PA, Ijomah TI. Influence of Brand Marketing on Economic Development: A Case Study of Global Consumer Goods Companies, 2022.
- 71. Babatunde SO, Okeleke PA, Ijomah TI. The Role of Digital Marketing in Shaping Modern Economies: An Analysis of E-Commerce Growth and Consumer Behavior, 2022.
- Catescu G. Detecting insider threats using security information and event management (SIEM). University of Applied Sciences Technikum Wien, 2018. Available at: shorturl. at/dtzOT
- Chukwuma-Eke EC, Ogunsola OY, Isibor NJ. Designing a robust cost allocation framework for energy corporations using SAP for improved financial performance. International Journal of Multidisciplinary Research and Growth Evaluation. 2021; 2(1):809-822.
 Doi: https://doi.org/10.54660/.IJMRGE.2021.2.1.809-822
- 74. Chukwuma-Eke EC, Ogunsola OY, Isibor NJ. A conceptual approach to cost forecasting and financial planning in complex oil and gas projects. International Journal of Multidisciplinary Research and Growth Evaluation. 2022; 3(1):819-833. Doi: https://doi.org/10.54660/.IJMRGE.2022.3.1.819-833
- Chukwuma-Eke EC, Ogunsola OY, Isibor NJ. A conceptual framework for financial optimization and budget management in large-scale energy projects. International Journal of Multidisciplinary Research and Growth Evaluation. 2022; 2(1):823-834. Doi: https://doi.org/10.54660/.IJMRGE.2021.2.1.823-834
- 76. Chukwuma-Eke EC, Ogunsola OY, Isibor NJ. Developing an integrated framework for SAP-based cost control and financial reporting in energy companies. International Journal of Multidisciplinary Research and Growth Evaluation. 2022; 3(1):805-818. Doi: https://doi.org/10.54660/.IJMRGE.2022.3.1.805-818
- 77. Chukwuma-Eke EC, Ogunsola OY, Isibor NJ. Conceptualizing digital financial tools and strategies for effective budget management in the oil and gas sector. International Journal of Management and Organizational Research. 2023; 2(1):230-246. Doi: https://doi.org/10.54660/IJMOR.2023.2.1.230-246
- 78. Dare SO, Abimbade A, Abimbade OA, Akinyemi A, Olasunkanmi IA. Computer literacy, attitude to computer and learning styles as predictors of physics students' achievement in senior secondary schools of Oyo State, 2019.
- Dosumu RE, George OO, Makata CO. Data-driven customer value management: Developing a conceptual model for enhancing product lifecycle performance and market penetration. International Journal of Management and Organizational Research. 2023; 2(1):261-266.
 - https://doi.org/10.54660/IJMOR.2023.2.1.261-266
- 80. Esiri S. A Strategic Leadership Framework for Developing Esports Markets in Emerging Economies. International Journal of Multidisciplinary Research and Growth Evaluation. 2021; 2(1):717-724.
- 81. Ezekiel OB, Akinyemi AL. Utilisation of artificial intelligence in education: The perception of university

- of ibadan lecturers. Journal of Global Research in Education and Social Science. 2022; 16(5):32-40.
- 82. Famaye T, Akinyemi AI, Aremu A. Effects of Computer Animation on Students' Learning Outcomes in Four Core Subjects in Basic Education in Abuja, Nigeria. African Journal of Educational Research. 2020; 22(1):70-84.
- 83. Francis Onotole E, Ogunyankinnu T, Adeoye Y, Osunkanmibi AA, Aipoh G, Egbemhenghe J. The Role of Generative AI in developing new Supply Chain Strategies-Future Trends and Innovations, 2022.
- 84. George OO, Dosumu RE, Makata CO. Integrating multi-channel brand communication: A conceptual model for achieving sustained consumer engagement and loyalty. International Journal of Management and Organizational Research. 2023; 2(1):254-260. Doi: https://doi.org/10.54660/IJMOR.2023.2.1.254-260
- 85. Hussain NY, Austin-Gabriel B, Ige AB, Adepoju PA, Afolabi AI. Generative AI advances for data-driven insights in IoT, cloud technologies, and big data challenges. Open Access Research Journal of Multidisciplinary Studies. 2023; 6(1):51-59.
- 86. Hussain NY, Austin-Gabriel B, Ige AB, Adepoju PA, Amoo OO, Afolabi AI. AI-driven predictive analytics for proactive security and optimization in critical infrastructure systems. Open Access Research Journal of Science and Technology. 2021; 2(2):6-15. Doi: https://doi.org/10.53022/oarjst.2021.2.2.0059
- 87. Hussain NY, Babalola FI, Kokogho E, Odio PE. International Journal of Social Science Exceptional Research, 2023.
- 88. Ibidunni AS, Ayeni AWA, Ogundana OM, Otokiti B, Mohalajeng L. Survival during times of disruptions: Rethinking strategies for enabling business viability in the developing economy. Sustainability. 2022; 14(20):13549.
- 89. Ibidunni AS, Ayeni AAW, Otokiti B. Investigating the Adaptiveness of MSMEs during Times of Environmental Disruption: Exploratory Study of a Capabilities-Based Insights from Nigeria. Journal of Innovation, Entrepreneurship and the Informal Economy. 2023; 10(1):45-59.
- 90. Ige AB, Austin-Gabriel B, Hussain NY, Adepoju PA, Amoo OO, Afolabi AI. Developing multimodal AI systems for comprehensive threat detection and geospatial risk mitigation. Open Access Research Journal of Science and Technology. 2022; 6(1):93-101. Doi: https://doi.org/10.53022/oarjst.2022.6.1.0063
- 91. Ihekoronye CP, Akinyemi AL, Aremu A. Effect of two modes of simulation-based flipped classroom strategy on learning outcomes of private universities' pre-degree physics students in Southwestern Nigeria. Journal of Global Research in Education and Social Science. 2023; 17(3):11-18.
- 92. Ijomah TI, Okeleke PA, Babatunde SO. The Influence of Integrated Marketing Strategies on The Adoption and Success of It Products: A Comparative Study of B2b and B2c Markets, 2023.
- 93. Ilori MO, Olanipekun SA. Effects of government policies and extent of its implementations on the foundry industry in Nigeria. IOSR Journal of Business Management. 2020; 12(11):52-59.
- 94. James AT, Phd OKA, Ayobami AO, Adeagbo A. Raising employability bar and building entrepreneurial

- capacity in youth: A case study of national social investment programme in Nigeria. Covenant Journal of Entrepreneurship, 2019.
- 95. Kolade O, Osabuohien E, Aremu A, Olanipekun KA, Osabohien R, Tunji-Olayeni P. Co-creation of entrepreneurship education: Challenges and opportunities for university, industry and public sector collaboration in Nigeria. The Palgrave Handbook of African Entrepreneurship, 2021, 239-265.
- 96. Kolade O, Rae D, Obembe D, Woldesenbet K. (Eds.). The Palgrave handbook of African entrepreneurship. Palgrave Macmillan, 2022.
- 97. Lawal AA, Ajonbadi HA, Otokiti BO. Leadership and organisational performance in the Nigeria small and medium enterprises (SMEs). American Journal of Business, Economics and Management. 2014; 2(5):121.
- 98. Lawal AA, Ajonbadi HA, Otokiti BO. Strategic importance of the Nigerian small and medium enterprises (SMES): Myth or reality. American Journal of Business, Economics and Management. 2014; 2(4):94-104.
- 99. Lawal CI, Friday SC, Ayodeji DC, Sobowale A. Policy-oriented strategies for expanding financial inclusion and literacy among women and marginalized populations. IRE Journals. 2023; 7(4):660-662.
- 100.Lawal CI, Friday SC, Ayodeji DC, Sobowale A. A conceptual framework for fostering stakeholder participation in budgetary processes and fiscal policy decision-making. IRE Journals. 2023; 6(7):553-555.
- 101.Muibi TG, Akinyemi AL. Emergency Remote Teaching During Covid-19 Pandemic and Undergraduates' learning Effectiveness at The University of Ibadan, Nigeria. African Journal of Educational Management. 2022; 23(2):95-110.
- 102.Nwabekee US, Aniebonam EE, Elumilade OO, Ogunsola OY. Predictive Model for Enhancing Long-Term Customer Relationships and Profitability in Retail and Service-Based, 2021.
- 103.Nwabekee US, Aniebonam EE, Elumilade OO, Ogunsola OY. Integrating Digital Marketing Strategies with Financial Performance Metrics to Drive Profitability Across Competitive Market Sectors, 2021.
- 104. Nwaimo CS, Adewumi A, Ajiga D. Advanced data analytics and business intelligence: Building resilience in risk management. International Journal of Scientific Research and Applications. 2022; 6(2):121. Doi: https://doi.org/10.30574/ijsra.2022.6.2.0121
- 105. Nwaimo CS, Adewumi A, Ajiga D, Agho MO, Iwe KA. AI and data analytics for sustainability: A strategic framework for risk management in energy and business. International Journal of Scientific Research and Applications. 2023; 8(2):158.
- 106. Odunaiya OG, Soyombo OT, Ogunsola OY. Economic incentives for EV adoption: A comparative study between the United States and Nigeria. Journal of Advanced Education and Sciences. 2021; 1(2):64-74. Doi: https://doi.org/10.54660/.JAES.2021.1.2.64-74
- 107.Odunaiya OG, Soyombo OT, Ogunsola OY. Energy storage solutions for solar power: Technologies and challenges. International Journal of Multidisciplinary Research and Growth Evaluation. 2021; 2(1):882-890. Doi: https://doi.org/10.54660/.IJMRGE.2021.2.4.882-890
- 108.Odunaiya OG, Soyombo OT, Ogunsola OY.

- Sustainable energy solutions through AI and software engineering: Optimizing resource management in renewable energy systems. Journal of Advanced Education and Sciences. 2022; 2(1):26-37. Doi: https://doi.org/10.54660/.JAES.2022.2.1.26-37
- 109.Odunaiya OG, Soyombo OT, Ogunsola OY. Innovations in energy financing: Leveraging AI for sustainable infrastructure investment and development. International Journal of Management and Organizational Research. 2023; 2(1):102-114. Doi: https://doi.org/10.54660/IJMOR.2023.2.1.102-114
- 110.Ogundare AF, Akinyemi AL, Aremu A. Impact of gamification and game-based learning on senior secondary school students' achievement in English language. Journal of Educational Review. 2021; 13(1):110-123. Higher Education Research and Policy Network (HERPNET).
- 111. Ogunyankinnu T, Onotole EF, Osunkanmibi AA, Adeoye Y, Aipoh G, Egbemhenghe J. Blockchain and AI synergies for effective supply chain management, 2022.
- 112.Okeleke PA, Babatunde SO, Ijomah TI. The Ethical Implications and Economic Impact of Marketing Medical Products: Balancing Profit and Patient Well-Being, 2022.
- 113. Olaiya SM, Akinyemi AL, Aremu A. Effect of a board game: Snakes and ladders on students' achievement in civic education. Journal of Nigeria Association for Educational Media and Technology (JEMT). 2017; 21(2).
- 114.Olanipekun KA. Assessment of Factors Influencing the Development and Sustainability of Small Scale Foundry Enterprises in Nigeria: A Case Study of Lagos State. Asian Journal of Social Sciences and Management Studies. 2020; 7(4):288-294.
- 115.Olanipekun KA, Ayotola A. Introduction to marketing. GES 301, Centre for General Studies (CGS), University of Ibadan, 2019.
- 116.Olanipekun KA, Ilori MO, Ibitoye SA. Effect of Government Policies and Extent of its Implementation on the Foundry Industry in Nigeria, 2020.
- 117.Olojede FO, Akinyemi A. Stakeholders' readiness for Adoption of Social Media Platforms for Teaching and Learning Activities in Senior Secondary Schools in Ibadan Metropolis, Oyo State, Nigeria. International Journal of General Studies Education. 2022; 141.
- 118.Oludare JK, Adeyemi K, Otokiti B. Impact of Knowledge Management Practices and Performance of Selected Multinational Manufacturing Firms in South-Western Nigeria. The title should be concise and supplied on a separate sheet of the manuscript. 2022; 2(1):48.
- 119.Oludare JK, Oladeji OS, Adeyemi K, Otokiti B. Thematic Analysis of Knowledge Management Practices and Performance of Multinational Manufacturing Firms in Nigeria, 2023.
- 120.Olufemi-Phillips AQ, Ofodile OC, Toromade AS, Eyo-Udo NL, Adewale TT. Optimizing FMCG supply chain management with IoT and cloud computing integration. International Journal of Management & Entrepreneurship Research. 2020; 6(11). Fair East Publishers.
- 121.Otokiti BO. A study of management practices and organisational performance of selected MNCs in

- emerging market A Case of Nigeria. International Journal of Business and Management Invention. 2017; 6(6):1-7.
- 122.Otokiti BO. Descriptive Analysis of Market Segmentation and Profit Optimization through Data Visualization. International Journal of Entrepreneurship and Business. 2023; 5(2):7-20,
- 123.Otokiti BO. Mode of Entry of Multinational Corporation and their Performance in the Nigeria Market (Doctoral dissertation, Covenant University), 2012.
- 124.Otokiti BO. Social media and business growth of women entrepreneurs in Ilorin metropolis. International Journal of Entrepreneurship, Business and Management. 2017; 1(2):50-65.
- 125.Otokiti BO. Business regulation and control in Nigeria. Book of Readings in Honour of Professor S. O. Otokiti. 2018; 1(2):201-215.
- 126.Otokiti BO. Descriptive analysis of market segmentation and profit optimization through data visualization [Master's thesis], 2023.
- 127.Otokiti BO, Akorede AF. Advancing sustainability through change and innovation: A co-evolutionary perspective. Innovation: Taking creativity to the market.Book of Readings in Honour of Professor S. O. Otokiti. 2018; 1(1):161-167.
- 128.Otokiti BO, Onalaja AE. The role of strategic brand positioning in driving business growth and competitive advantage. Iconic Research and Engineering Journals. 2021; 4(9):151-168.
- 129.Otokiti BO, Onalaja AE. Women's leadership in marketing and media: Overcoming barriers and creating lasting industry impact. International Journal of Social Science Exceptional Research. 2022; 1(1):173-185.
- 130.Otokiti BO, Igwe AN, Ewim CP, Ibeh AI, Sikhakhane-Nwokediegwu Z. A framework for developing resilient business models for Nigerian SMEs in response to economic disruptions. Int J Multidiscip Res Growth Eval. 2022; 3(1):647-659.
- 131.Otokiti BO, Akinbola OA. Effects of Lease Options on the Organizational Growth of Small and Medium Enterprise (SME's) in Lagos State, Nigeria. Asian Journal of Business and Management Sciences. 2013; 3(4)
- 132.Otokiti-Ilori BO. Business Regulation and Control in Nigeria. Book of Readings in Honour of Professor S.O Otokiti. 2018; 1(1).
- 133.Otokiti-Ilori BO, Akorede AF. Advancing Sustainability through Change and Innovation: A coevolutionanary perspective. Innovation: Taking Creativity to the Market, book of readings in honour of Professor S.O Otokiti. 2018; 1(1):161-167.
- 134.Podzins O, Romanovs A. Why siem is irreplaceable in a secure it environment? In 2019 open conference of electrical, electronic and information sciences (eStream). IEEE, April 2019, 1-5.
- 135.Sheeraz M, Paracha MA, Haque MU, Durad MH, Mohsin SM, Band SS, *et al.* Effective security monitoring using efficient SIEM architecture. Hum.-Centric Comput. Inf. Sci. 2023; 13:1-18.
- 136.Tella A, Akinyemi AL. Entrepreneurship education and Self-sustenance among National Youth Service Corps members in Ibadan, Nigeria. Proceedings E-Book. 2022; 202.

- 137.Ugbaja US, Nwabekee US, Owobu WO, Abieba OA. Revolutionizing sales strategies through AI-driven customer insights, market intelligence, and automated engagement tools. International Journal of Social Science Exceptional Research. 2023; 2(1):193-210.
- 138.Ugbaja US, Nwabekee US, Owobu WO, Abieba OA. Conceptual framework for role-based network access management to minimize unauthorized data exposure across IT environments. International Journal of Social Science Exceptional Research. 2023; 2(1):211-221.