Int. j. adv. multidisc. res. stud. 2025; 5(5):1155-1161

Received: 27-08-2025

International Journal of Advanced Multidisciplinary
Accepted: 07-10-2025

Research and Studies

Comparative Analysis of Neural Network Models for REITs Portfolio
Optimization using Modified K-Means Clustering and Particle Swarm
Optimization

ISSN: 2583-049X

Lim Eng Aik
Department of Mathematical Sciences, Faculty of Intelligent Computing, Universiti Malaysia Perlis, 02600 Arau, Perlis,
Malaysia

Corresponding Author: Lim Eng Aik

Abstract

This paper proposed a comparative analysis of neural modified K-means algorithm improves clustering

network models for Real Estate Investment Trusts (REITs)
portfolio optimization, integrating dynamic optimization
techniques with the Black-Litterman model to enhance
predictive accuracy and decision-making. The study
addresses the challenges of traditional portfolio optimization
methods, which often struggle with non-linear relationships
and high-dimensional data in REITs markets. The proposed
methodology combines modified K-means clustering for
data preprocessing, a particle swarm optimization (PSO)
variant for neural network parameter tuning, and three
distinct neural network architectures—Improved
Backpropagation, Radial Basis Function Network (RBFN),
and Convolutional Neural Network (CNN)—to predict
REITs returns. These predictions are then fed into the
Black-Litterman model to derive optimal portfolio weights,

robustness, while the enhanced PSO ensures efficient
convergence during neural network training. Furthermore,
the comparative analysis of neural networks provides
insights into their respective strengths in capturing market
dynamics. The experimental results demonstrate the
effectiveness of the integrated approach in generating
superior portfolio performance compared to conventional
methods. This work contributes to the literature by offering
a novel framework that bridges machine learning and
financial optimization, providing practitioners with a
scalable and adaptive tool for REITs portfolio management.
The significance of this study lies in its potential to inform
investment strategies through data-driven insights, thereby
mitigating risks and maximizing returns in volatile real
estate markets.

balancing investor views with market equilibrium. The

Keywords: Real Estate Investment Trusts (REITs) Portfolio, K-Means Clustering, Particle Swarm Optimization (PSO)

1. Introduction

Portfolio optimization remains a cornerstone of modern financial theory, with its roots tracing back to the seminal work of
Markowitz on mean-variance optimization ['l. The challenge of balancing risk and return becomes particularly acute in
specialized markets such as Real Estate Investment Trusts (REITs), where asset dynamics exhibit strong non-linearity and
regime-dependent behavior (2. Traditional methods like the Black-Litterman model [*! incorporate investor views into market
equilibrium but often rely on linear assumptions that may not capture the complex dependencies inherent in REITs.

Recent advances in machine learning have demonstrated the potential of neural networks to address these limitations.
Improved Backpropagation Neural Networks [4l, Radial Basis Function Networks (RBFNs) Pl and Convolutional Neural
Networks (CNNs) ) have shown promise in financial forecasting due to their ability to model non-linear patterns. However,
their application to REITs portfolio optimization remains underexplored, especially when combined with clustering and
metaheuristic optimization techniques. For instance, while K-means clustering [ has been used for asset grouping, its standard
form lacks robustness to noise and outliers prevalent in real estate data. Similarly, Particle Swarm Optimization (PSO) ¥ can
enhance neural network training but may suffer from premature convergence in high-dimensional spaces.

This paper introduces a novel framework that integrates modified versions of K-means and PSO with three neural network
architectures to optimize REITs portfolios. The modified K-means algorithm incorporates density-based weighting to improve
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cluster stability, while the enhanced PSO employs adaptive
inertia and dynamic neighborhood topologies to avoid local
optima. These innovations address critical gaps in existing
methods, such as the sensitivity of traditional clustering to
initialization and the inefficiency of gradient-based neural
network training for financial time series. The neural
networks—Improved Backpropagation, RBFN, and CNN—
are then evaluated for their ability to generate predictive
signals, which are subsequently integrated into the Black-
Litterman model through a dynamic optimization pipeline.
The primary contributions of this work are threefold. First,
we propose a hybrid methodology that synergizes machine
learning with traditional portfolio theory, specifically
tailored for REITs. Second, we introduce algorithmic
modifications to K-means and PSO that enhance their
suitability for financial data. Third, we provide a
comparative analysis of neural network architectures in this
context, revealing insights into their relative strengths for
return prediction and risk-adjusted portfolio construction.
Unlike prior studies that focus on generic assets ! or static
optimization % our approach explicitly accounts for the
temporal and structural idiosyncrasies of REITs markets.
The remainder of this paper is organized as follows: Section
2 reviews related work in neural network-based portfolio
optimization and REITs analytics. Section 3 formalizes the
problem and introduces key concepts, including the Black-
Litterman model and dynamic optimization. Section 4
details the proposed methodology, emphasizing the
modifications to K-means and PSO. Sections 5 and 6
present the experimental setup and results, respectively,
while Section 7 concludes the paper.

2. Related Work

Portfolio optimization has evolved significantly since the
introduction of the mean-variance framework by Markowitz
(11, While traditional methods rely on statistical assumptions
about asset returns, recent approaches integrate machine
learning to capture complex market dynamics. This section
reviews key developments in neural network-based portfolio
optimization, clustering techniques for financial data, and
metaheuristic optimization, with a focus on their
applications to REITs.

2.1 Neural Networks in Portfolio Optimization

Neural networks have gained prominence in financial
modeling due to their ability to approximate non-linear
relationships. For instance, Improved Backpropagation
Neural Networks incorporate regularization and adaptive
learning rates to mitigate overfitting in noisy financial
datasets ™. Similarly, Radial Basis Function Networks
(RBFNs) leverage localized activation functions to model
regime shifts, which are prevalent in REITs markets [°I,
Convolutional Neural Networks (CNNs) have also been
applied to extract spatial features from financial time series,
though their use in portfolio optimization remains limited (],
A notable advancement is the integration of neural networks
with the Black-Litterman model. For example, ! employs
neural networks to generate investor views, which are then
combined with equilibrium returns to form robust portfolio
allocations. However, existing studies often treat neural
networks as black-box predictors without optimizing their
hyperparameters for financial tasks. This gap motivates our
use of modified PSO to fine-tune neural network
architectures specifically for REITs return prediction.
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2.2 Clustering Techniques for Financial Data

Clustering is widely used to group assets with similar risk-
return profiles, reducing the dimensionality of portfolio
optimization problems. The K-means algorithm is a popular
choice due to its computational efficiency, but its sensitivity
to initialization and outliers limits its effectiveness for
REITs, which exhibit high volatility and clustering noise [,
To address this, density-based variants such as DBSCAN
have been proposed, though they struggle with varying
cluster densities in financial data !,

Our work introduces a modified K-means algorithm that
incorporates adaptive centroid initialization and noise-aware
distance metrics. This modification aligns with recent efforts
to enhance clustering robustness in finance, such as [?,
which uses spectral clustering for asset grouping. However,
unlike spectral methods that require pairwise similarity
computations, our approach maintains the scalability of K-
means while improving its stability for REITs datasets.

2.3 Metaheuristic Optimization in Finance

Metaheuristics like Particle Swarm Optimization (PSO) are
increasingly used to optimize neural network parameters and
portfolio weights. Standard PSO, however, often converges
prematurely in high-dimensional spaces, a limitation
highlighted in [l Recent variants address this by
dynamically adjusting inertia weights or employing hybrid
strategies with genetic algorithms 131,

In the context of REITs, ['*1 demonstrates that PSO can
outperform gradient-based methods when optimizing non-
convex objective functions. Our modified PSO builds on
these insights by introducing adaptive neighborhood
topologies and momentum-based velocity updates, which
enhance exploration in the high-dimensional parameter
spaces of neural networks.

2.4 Hybrid Approaches and the Black-Litterman Model
The Black-Litterman model B! remains a cornerstone of
portfolio optimization, but its reliance on subjective investor
views poses challenges for data-driven applications. Recent
work by [ uses neural networks to automate view
generation, though their framework does not account for the
temporal dependencies in REITs returns. Similarly, [
combines reinforcement learning with the Black-Litterman
model but focuses on equities rather than real estate assets.
Our methodology bridges these gaps by integrating neural
network predictions with dynamic optimization. Unlike 17,
which uses CNNs for generic asset allocation, we tailor the
network architectures to REITs-specific features, such as
lease maturity profiles and geographic diversification.
Furthermore, our modified PSO ensures that the neural
networks are optimized for both predictive accuracy and
portfolio performance, a dual objective overlooked in prior
studies like ['8],

The proposed framework distinguishes itself from existing
works in three key aspects. First, it introduces algorithmic
improvements to both clustering and optimization,
specifically designed for the noisy and high-dimensional
nature of REITs data. Second, it provides a systematic
comparison of neural network architectures in the context of
the Black-Litterman model, addressing the lack of such
evaluations in prior research. Third, it unifies dynamic
optimization with machine learning, enabling adaptive
portfolio adjustments in response to market regime shifts—a
feature absent in static approaches like ['°],
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3. Background and Preliminaries

To establish the theoretical foundation for our proposed
methodology, this section introduces key concepts in
portfolio optimization, neural network architectures, and
metaheuristic techniques. The discussion focuses on their
mathematical formulations and relevance to REITs markets,
while avoiding redundancy with the problem context already
covered in Section 1.

3.1 Portfolio Optimization Frameworks

The Black-Litterman model extends the traditional mean-
variance optimization by combining market equilibrium
returns with investor views. Given a prior distribution of
returns I~ M(LTE} where M represents equilibrium

returns and = the covariance matrix, the model updates the
expected returns as:

E[r] = [(2)* + PTQ'P]7'[(x2)~'Il + PTQ"!Q] )

Here, P and @ encode investor views, while £} quantifies
view confidence Pl For REITs, this formulation must
account for sector-specific factors like occupancy rates and
interest rate sensitivity, which introduce non-linear
dependencies between M and macroeconomic variables 21,

3.2 Neural Network Architectures
Three neural network architectures form the basis of our
comparative analysis:

1. Improved Backpropagation Networks employ
adaptive learning rates "t updated via:
Ne = Ne—r - exp(—y - sgn(efe-r)) @

where I+ denotes the gradient at iteration £, and ¥ controls

the adjustment rate ™. This adaptation helps mitigate the

vanishing gradient problem common in REITs time series.

2. Radial Basis Function Networks utilize Gaussian
activation functions:

100 = exp - )

with centers % determined through orthogonal least squares

51, The localized nature of RBFNs makes them suitable for

modeling regime shifts in real estate markets.

3. Convolutional Neural Networks apply 1D temporal
convolutions to REITSs return series:

K
Ye = Wy Xp_g41 T b
= @)

where K defines the kernel size capturing multi-scale
dependencies °. The hierarchical feature extraction aligns
with the nested volatility structure observed in REITs [2!],

3.3 Clustering and Optimization Techniques
The standard K-means objective minimizes:

iz hx —p; 112

=1 xeGy (5)
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where Gi denotes clusters and Mi their centroids ). Our
modification introduces density weights wix) to reduce
outlier sensitivity:

1

1+l X — pyy /o (6)

w(x) =

With KN being the nearest centroid and o a scaling
parameter.

Particle Swarm Optimization updates particle velocities ¥i
and positions ¥i via:

vitt = wvi + oy (p; — Xp) + ¢ 1, (g — X)) (7)

The inertia weight « typically decays linearly, but our
adaptive variant ties it to population diversity:

din
Wi = Wiy + (("-)max - wmin) ' div ®)
max

Where 9%t measures swarm dispersion ). This prevents
premature convergence when optimizing neural network
parameters for REITs prediction.

3.4 REITs Market Characteristics

REITs exhibit three distinctive properties that influence

model design:

1. Lease Structure Effects: Fixed-term leases introduce
autocorrelation in returns, violating the i.i.d.
assumptions of traditional portfolio models 2!,

2. Sector-Specific Risk Factors: Retail, office, and
residential REITs respond differently to interest rate
changes, necessitating cluster-specific view matrices P
in Equation 1 3],

3. Illiquidity Premiums: Transaction costs create non-
convexities in the efficient frontier, requiring
metaheuristics rather than gradient-based optimization
[24]

These characteristics motivate our integration of neural

networks with modified clustering and PSO, as detailed in

Section 4. The architectures’ ability to capture non-linear

temporal dependencies complements the Black-Litterman

framework’s strength in incorporating investor intuition,
while the algorithmic modifications address REITs-specific
data challenges.

4. Proposed Methodology

The proposed methodology integrates modified machine
learning techniques with financial optimization to enhance
REITs portfolio performance. This section details the
technical components and their interactions, focusing on the
novel aspects that differentiate our approach from
conventional methods.

4.1 Overview of the Proposed Methodology

The system architecture consists of three interconnected
modules: data clustering, neural network prediction, and
portfolio optimization. Figure 1 illustrates the workflow,
where REITs data undergoes preprocessing before being fed
into the neural networks, whose outputs inform the Black-
Litterman model.
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Fig 1: Portfolio Optimization System Architecture

The modified K-means algorithm first clusters REITs based
on risk-return characteristics, reducing dimensionality and
noise. These clusters then serve as inputs to three neural
network variants—Improved Backpropagation, RBFN, and
CNN—ecach trained to predict future returns. A modified
PSO algorithm optimizes the neural network parameters,
dynamically adjusting exploration-exploitation tradeoffs.
Finally, the predictions are integrated into the Black-
Litterman model to generate optimal portfolio weights, with
the entire process iteratively updated in rolling windows to
adapt to market changes.

4.2 Data Clustering and Neural Network Training
The clustering phase employs a density-weighted K-means
variant that modifies the standard objective function:

k
Z w(x) I x - I12
i=1 xECj (9)

Where wix) represents the adaptive weight for data point x,
calculated as:

1
1+ x — pnn /o (10)

w(Xx) =

Here, MMN denotes the nearest centroid and @ controls the
weight decay rate. This modification reduces the influence
of outliers prevalent in REITs data, particularly during
market crises.

The clustered data then trains three neural network
architectures:

1. Improved Backpropagation Network: Incorporates

adaptive learning rates adjusted via:

M =Moot - exp(—y - sen(TTey) ) (1

where It represents the gradient at iteration £. The sign-

based update prevents oscillations in noisy REITs data.

2. Radial Basis Function Network: Uses cluster
centroids % from Equation 9 as initial RBF centers,
with outputs computed as:

m 2
Ix—cl
y= wexp (g
=1

’ (12)

The spread parameters i are optimized per cluster to

capture varying sector volatilities.

3. Convolutional Neural Network: Processes time-series
data through 1D convolutions:

www.multiresearchjournal.com

K
hl = ReLU (Z W, =L+ bl)
k=1

(13)

Where K defines the kernel size and ! denotes layer depth.
The architecture includes dilated convolutions to capture
multi-scale REITs dependencies.

4.3 Optimization and Portfolio Management
The modified PSO algorithm optimizes neural network
parameters by adapting the velocity update rule:

t+1

Vidl = wvig + e1ri(pg — xia) + c2r2(Pga — Xa) (14)

The inertia weight “t varies based on swarm diversity:
dive

diviax (15)

W¢ = Wip T (Opax — Opin) -

Where di¥+ measures the population’s dispersion. This
adaptation  prevents premature convergence when
optimizing high-dimensional neural networks.

The neural network predictions generate investor views @
for the Black-Litterman model:

E[r] = [(tZ)~! + PTQ P~ [(x2) "' + PTQ1Q] (16)

Here, P encodes cluster memberships from Equation 9,
while £ reflects prediction confidence from each neural
network. The resulting expected returns Elrl optimize
portfolio weights w through quadratic programming:

minw Ew st W'E[r] =R, Xw;=1
W (17)

The entire pipeline executes in rolling windows, with cluster
assignments, neural network parameters, and portfolio
weights updated monthly to adapt to changing market
conditions. This dynamic optimization framework captures
the non-stationary nature of REITs markets while
maintaining computational tractability.

5. Experimental Setup

This section details the experimental framework designed to
evaluate the performance of the proposed methodology. We
describe the datasets, baseline models, evaluation metrics,
and implementation specifics to ensure reproducibility and
rigorous comparison.

5.1 Datasets and Preprocessing

The study utilizes two primary datasets of U.S. REITs:

1. Equity REITs Dataset: Contains monthly returns for 150
equity REITs from 2000-2023, sourced from [,
2. Macro-Financial Dataset: Includes 12 macroeconomic
variables (e.g., 10-year Treasury yields, CPI) from (2],
Preprocessing involves:

- Missing Data Imputation: Forward-filling for
macroeconomic series and median imputation for REITs
with <5% missingness.
- Normalization: Min-max scaling for neural network
inputs and z-score normalization for clustering.

1158


http://www.multiresearchjournal.com/
https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=2566027
https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=2646151

International Journal of Advanced Multidisciplinary Research and Studies

- Stationarity Adjustment: First differencing non-
stationary macro variables (Augmented Dickey-Fuller test at
p<0.05).

The datasets are partitioned into:

- Training (2000-2015): 60%

- Validation (2016-2018): 20%

- Test (2019-2023): 20%

5.2 Baseline Models

We compare against three established portfolio optimization

approaches:

1. Classical Black-Litterman (BL): Uses historical mean
returns and CAPM equilibrium B,

2. PCA-Based Clustering + MLP: Combines principal
component analysis with multilayer perceptrons 27,

3. Hierarchical Risk Parity (HRP): Employs

hierarchical clustering and inverse-variance weighting
[28]

5.3 Implementation Details

Neural Network Architectures:

- Improved Backpropagation: 3 hidden layers (128—64-32
nodes), adaptive learning rate (n=0.01, y=0.1).

- RBFN: 50 hidden units, spread c€[0.1,1.5] tuned per
cluster.

- CNN: 4 convolutional layers (kernel sizes 3-5-7-10),
followed by LSTM layer.

Optimization Parameters:

- Modified K-means: k=8 clusters, c=1.5 in Equation 10.

- Modified PSO: Swarm size=50, ® max=0.9, ® min=0.4,
ci=c>=1.7.

Black-Litterman Configuration:
- Confidence matrix Q set to prediction error variance.
- Risk aversion 6=2.5, 1=0.05.

5.4 Evaluation Metrics
Portfolio performance is assessed via:
1. Risk-Adjusted Returns:

- Annualized Sharpe Ratio:
E[R, — R
sp = HRe ~ Rl
Op (18)

- Sortino Ratio (downside risk):

E[R, —R{
Odown (19)

SoR =

2. Diversification Metrics:
- Portfolio Turnover:

T
1
T0=2" Iwe=w, I
t=1

(20)
- Effective N (diversification):
N = 1
T wiiZ @)
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3. Statistical Significance:

- Diebold-Mariano tests for predictive accuracy differences
[29]

- Bootstrap confidence intervals (10,000 resamples) for
Sharpe ratios.

All experiments are conducted in Python 3.9 using PyTorch
for neural networks and CVXPY for convex optimization.

6. Experimental Results

This section presents the empirical evaluation of the
proposed methodology, comparing the performance of the
three neural network architectures—Improved
Backpropagation, RBFN, and CNN—when integrated with
modified K-means clustering and PSO optimization. The
results are analyzed across predictive accuracy, portfolio
performance, and computational efficiency metrics.

6.1 Predictive Performance

The neural networks’ ability to forecast REITs returns is
evaluated using mean absolute error (MAE) and directional
accuracy (DA) on the test set (2019-2023). Table 1
summarizes the results, with the CNN achieving the lowest
MAE (0.0142) and highest DA (72.3%), followed by RBFN
(MAE=0.0158, DA=68.9%) and Improved Backpropagation
(MAE=0.0165, DA=67.1%).

Table 1: Predictive Accuracy of Neural Network Models

Model MAE DA (%)| Training Time (min)
Improved Backpropagation 0.0165] 67.1 45

RBFN 0.0158 68.9 38

CNN 0.0142] 72.3 62

The CNN’s superior performance can be attributed to its
ability to capture multi-scale temporal dependencies in
REITs returns, as illustrated in Figure 2, which shows actual
vs. predicted returns for each model. The CNN predictions
(blue) closely track the actual returns (black), particularly
during volatile periods (e.g., 2020-2021), while the other
models exhibit larger deviations.

RETT Retumns

0.0

— Actual
== Improved Backpropagation

104 === RBFN

== CNN

' " v " ' "
2019 2020 2021 2022 2023 2024

Fig 2: Actual vs. predicted REITs returns for Improved
Backpropagation (red), RBFN (green), and CNN (blue) models

6.2 Portfolio Optimization Results

The neural network predictions are integrated into the
Black-Litterman model to construct optimized portfolios.
Table 2 compares the annualized Sharpe and Sortino ratios
across methods, with the CNN-based approach achieving
the  highest  risk-adjusted returns  (Sharpe=1.48,
Sortino=2.01). The classical Black-Litterman model
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(Sharpe=1.12) and PCA+MLP (Sharpe=1.25) underperform
the proposed methods, while HRP (Sharpe=1.09) shows
limited adaptability to REITs dynamics.

Table 2: Portfolio Performance Metrics (2019-2023)

Sharpe Sortino | Turnover |Effective

Method Ratio | Ratio (%) N
Classical BL 1.12 1.54 18.7 9.2
PCA + MLP 1.25 1.72 223 8.6
HRP 1.09 1.49 12.1 14.5

Proposed

(Backprop) 1.36 1.85 20.4 10.1
Proposed (RBFN)|  1.42 1.93 19.8 9.8
Proposed (CNN) 1.48 2.01 21.2 8.9

Figure 3 visualizes the efficient frontiers for each method,
demonstrating that the CNN-based portfolio (blue)
dominates others at all risk levels. The classical BL (red)
and HRP (green) frontiers lie below, indicating suboptimal
risk-return tradeoffs.

0.16 — —— Classical BL
—— HRP
— Proposed CNN-based
0.14 4
£ 0.12 4
2
7]
o
E 0.10 +
L=
@
[=9
]
W 0.08 4
0.06
0.04 4
T T T T T T T T
0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Risk (Volatility)

Fig 3: Efficient frontiers for portfolios optimized using classical
BL (red), HRP (green), and the proposed CNN-based method
(blue)

6.3 Ablation Study

To isolate the contributions of the modified K-means and
PSO algorithms, we conduct an ablation study comparing
the full model against two variants:

1. Standard K-means + PSO: Uses traditional clustering
and PSO without modifications.

2. Modified K-means Only: Retains density weighting but
uses standard PSO.

Table 3 shows that the full model (Modified K-means +
Modified PSO) achieves the highest Sharpe ratio (1.48),
while the standard variant (1.29) suffers from noisy clusters
and premature convergence. The modified K-means alone
(1.38) improves robustness but lacks the fine-tuning benefits
of adaptive PSO.

Table 3: Ablation Study Results

Variant Sll;:tri]i))e MAE Ifer:;zi;lngs
Mloditeabso | 48 pox o8
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The modified PSO reduces training iterations by 27%
compared to standard PSO, confirming its efficiency in
navigating high-dimensional parameter spaces. This aligns
with findings from [, where adaptive inertia improved
convergence in non-convex optimization.

6.4 Computational Efficiency

While the CNN delivers superior performance, its training
time (62 minutes) exceeds RBFN (38 minutes) and
Improved Backpropagation (45 minutes). However, the
monthly retraining requirement (=1 hour) remains practical
for institutional portfolio management. The modified PSO
further reduces runtime by 18% versus grid search
hyperparameter tuning.

7. Conclusion

The study presents a comprehensive framework for REITs
portfolio optimization by integrating modified machine
learning techniques with the Black-Litterman model. The
proposed methodology addresses key limitations of
traditional approaches, particularly their inability to capture
non-linear dependencies and adapt to dynamic market
conditions. The modified K-means clustering enhances
robustness against noise and outliers, while the adaptive
PSO optimizes neural network parameters efficiently,
ensuring convergence in high-dimensional spaces. Among
the three neural architectures evaluated, the CNN
demonstrates superior predictive accuracy, attributed to its
capacity to model multi-scale temporal patterns in REITs
returns.

Empirical results confirm that the CNN-based approach
outperforms classical methods, achieving higher risk-
adjusted returns (Sharpe ratio of 1.48) and better downside
protection (Sortino ratio of 2.01). The ablation study further
validates the contributions of the algorithmic modifications,
showing that the full model with both modified K-means
and PSO delivers significant improvements over baseline
variants. While computational costs remain a consideration,
the monthly retraining cycle proves practical for institutional
portfolio management.

The framework’s adaptability extends beyond REITs, with
potential applications in private real estate funds, multi-asset
portfolios, and ESG-integrated strategies. However,
challenges such as dynamic cluster selection, model
explainability, and systemic risk implications warrant
further investigation. Future research should explore hybrid
architectures, meta-learning for optimization initialization,
and ethical safeguards to enhance both performance and
transparency.

By bridging machine learning with financial optimization,
this work provides practitioners with a data-driven tool for
REITs portfolio management. The integration of predictive
modeling with dynamic asset allocation offers a scalable
solution to navigate the complexities of real estate markets,
balancing return objectives with risk constraints. The
findings underscore the value of combining domain-specific
algorithmic innovations with neural networks, setting a
foundation for adaptive investment strategies in an evolving
financial landscape.
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