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Abstract

This paper proposed a comparative analysis of neural 

network models for Real Estate Investment Trusts (REITs) 

portfolio optimization, integrating dynamic optimization 

techniques with the Black-Litterman model to enhance 

predictive accuracy and decision-making. The study 

addresses the challenges of traditional portfolio optimization 

methods, which often struggle with non-linear relationships 

and high-dimensional data in REITs markets. The proposed 

methodology combines modified K-means clustering for 

data preprocessing, a particle swarm optimization (PSO) 

variant for neural network parameter tuning, and three 

distinct neural network architectures—Improved 

Backpropagation, Radial Basis Function Network (RBFN), 

and Convolutional Neural Network (CNN)—to predict 

REITs returns. These predictions are then fed into the 

Black-Litterman model to derive optimal portfolio weights, 

balancing investor views with market equilibrium. The 

modified K-means algorithm improves clustering 

robustness, while the enhanced PSO ensures efficient 

convergence during neural network training. Furthermore, 

the comparative analysis of neural networks provides 

insights into their respective strengths in capturing market 

dynamics. The experimental results demonstrate the 

effectiveness of the integrated approach in generating 

superior portfolio performance compared to conventional 

methods. This work contributes to the literature by offering 

a novel framework that bridges machine learning and 

financial optimization, providing practitioners with a 

scalable and adaptive tool for REITs portfolio management. 

The significance of this study lies in its potential to inform 

investment strategies through data-driven insights, thereby 

mitigating risks and maximizing returns in volatile real 

estate markets. 
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1. Introduction 

Portfolio optimization remains a cornerstone of modern financial theory, with its roots tracing back to the seminal work of 

Markowitz on mean-variance optimization [1]. The challenge of balancing risk and return becomes particularly acute in 

specialized markets such as Real Estate Investment Trusts (REITs), where asset dynamics exhibit strong non-linearity and 

regime-dependent behavior [2]. Traditional methods like the Black-Litterman model [3] incorporate investor views into market 

equilibrium but often rely on linear assumptions that may not capture the complex dependencies inherent in REITs. 

Recent advances in machine learning have demonstrated the potential of neural networks to address these limitations. 

Improved Backpropagation Neural Networks [4], Radial Basis Function Networks (RBFNs) [5], and Convolutional Neural 

Networks (CNNs) [6] have shown promise in financial forecasting due to their ability to model non-linear patterns. However, 

their application to REITs portfolio optimization remains underexplored, especially when combined with clustering and 

metaheuristic optimization techniques. For instance, while K-means clustering [7] has been used for asset grouping, its standard 

form lacks robustness to noise and outliers prevalent in real estate data. Similarly, Particle Swarm Optimization (PSO) [8] can 

enhance neural network training but may suffer from premature convergence in high-dimensional spaces. 

This paper introduces a novel framework that integrates modified versions of K-means and PSO with three neural network 

architectures to optimize REITs portfolios. The modified K-means algorithm incorporates density-based weighting to improve
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cluster stability, while the enhanced PSO employs adaptive 

inertia and dynamic neighborhood topologies to avoid local 

optima. These innovations address critical gaps in existing 

methods, such as the sensitivity of traditional clustering to 

initialization and the inefficiency of gradient-based neural 

network training for financial time series. The neural 

networks—Improved Backpropagation, RBFN, and CNN—

are then evaluated for their ability to generate predictive 

signals, which are subsequently integrated into the Black-

Litterman model through a dynamic optimization pipeline. 

The primary contributions of this work are threefold. First, 

we propose a hybrid methodology that synergizes machine 

learning with traditional portfolio theory, specifically 

tailored for REITs. Second, we introduce algorithmic 

modifications to K-means and PSO that enhance their 

suitability for financial data. Third, we provide a 

comparative analysis of neural network architectures in this 

context, revealing insights into their relative strengths for 

return prediction and risk-adjusted portfolio construction. 

Unlike prior studies that focus on generic assets [9] or static 

optimization [10], our approach explicitly accounts for the 

temporal and structural idiosyncrasies of REITs markets. 

The remainder of this paper is organized as follows: Section 

2 reviews related work in neural network-based portfolio 

optimization and REITs analytics. Section 3 formalizes the 

problem and introduces key concepts, including the Black-

Litterman model and dynamic optimization. Section 4 

details the proposed methodology, emphasizing the 

modifications to K-means and PSO. Sections 5 and 6 

present the experimental setup and results, respectively, 

while Section 7 concludes the paper. 

 

2. Related Work 

Portfolio optimization has evolved significantly since the 

introduction of the mean-variance framework by Markowitz 
[1]. While traditional methods rely on statistical assumptions 

about asset returns, recent approaches integrate machine 

learning to capture complex market dynamics. This section 

reviews key developments in neural network-based portfolio 

optimization, clustering techniques for financial data, and 

metaheuristic optimization, with a focus on their 

applications to REITs. 

 

2.1 Neural Networks in Portfolio Optimization 

Neural networks have gained prominence in financial 

modeling due to their ability to approximate non-linear 

relationships. For instance, Improved Backpropagation 

Neural Networks incorporate regularization and adaptive 

learning rates to mitigate overfitting in noisy financial 

datasets [4]. Similarly, Radial Basis Function Networks 

(RBFNs) leverage localized activation functions to model 

regime shifts, which are prevalent in REITs markets [5]. 

Convolutional Neural Networks (CNNs) have also been 

applied to extract spatial features from financial time series, 

though their use in portfolio optimization remains limited [6]. 

A notable advancement is the integration of neural networks 

with the Black-Litterman model. For example, [2] employs 

neural networks to generate investor views, which are then 

combined with equilibrium returns to form robust portfolio 

allocations. However, existing studies often treat neural 

networks as black-box predictors without optimizing their 

hyperparameters for financial tasks. This gap motivates our 

use of modified PSO to fine-tune neural network 

architectures specifically for REITs return prediction. 

2.2 Clustering Techniques for Financial Data 

Clustering is widely used to group assets with similar risk-

return profiles, reducing the dimensionality of portfolio 

optimization problems. The K-means algorithm is a popular 

choice due to its computational efficiency, but its sensitivity 

to initialization and outliers limits its effectiveness for 

REITs, which exhibit high volatility and clustering noise [7]. 

To address this, density-based variants such as DBSCAN 

have been proposed, though they struggle with varying 

cluster densities in financial data [11]. 

Our work introduces a modified K-means algorithm that 

incorporates adaptive centroid initialization and noise-aware 

distance metrics. This modification aligns with recent efforts 

to enhance clustering robustness in finance, such as [12], 

which uses spectral clustering for asset grouping. However, 

unlike spectral methods that require pairwise similarity 

computations, our approach maintains the scalability of K-

means while improving its stability for REITs datasets. 

 

2.3 Metaheuristic Optimization in Finance 

Metaheuristics like Particle Swarm Optimization (PSO) are 

increasingly used to optimize neural network parameters and 

portfolio weights. Standard PSO, however, often converges 

prematurely in high-dimensional spaces, a limitation 

highlighted in [8]. Recent variants address this by 

dynamically adjusting inertia weights or employing hybrid 

strategies with genetic algorithms [13]. 

In the context of REITs, [14] demonstrates that PSO can 

outperform gradient-based methods when optimizing non-

convex objective functions. Our modified PSO builds on 

these insights by introducing adaptive neighborhood 

topologies and momentum-based velocity updates, which 

enhance exploration in the high-dimensional parameter 

spaces of neural networks. 

 

2.4 Hybrid Approaches and the Black-Litterman Model 

The Black-Litterman model [3] remains a cornerstone of 

portfolio optimization, but its reliance on subjective investor 

views poses challenges for data-driven applications. Recent 

work by [15] uses neural networks to automate view 

generation, though their framework does not account for the 

temporal dependencies in REITs returns. Similarly, [16] 

combines reinforcement learning with the Black-Litterman 

model but focuses on equities rather than real estate assets. 

Our methodology bridges these gaps by integrating neural 

network predictions with dynamic optimization. Unlike [17], 

which uses CNNs for generic asset allocation, we tailor the 

network architectures to REITs-specific features, such as 

lease maturity profiles and geographic diversification. 

Furthermore, our modified PSO ensures that the neural 

networks are optimized for both predictive accuracy and 

portfolio performance, a dual objective overlooked in prior 

studies like [18]. 

The proposed framework distinguishes itself from existing 

works in three key aspects. First, it introduces algorithmic 

improvements to both clustering and optimization, 

specifically designed for the noisy and high-dimensional 

nature of REITs data. Second, it provides a systematic 

comparison of neural network architectures in the context of 

the Black-Litterman model, addressing the lack of such 

evaluations in prior research. Third, it unifies dynamic 

optimization with machine learning, enabling adaptive 

portfolio adjustments in response to market regime shifts—a 

feature absent in static approaches like [19]. 
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3. Background and Preliminaries 

To establish the theoretical foundation for our proposed 

methodology, this section introduces key concepts in 

portfolio optimization, neural network architectures, and 

metaheuristic techniques. The discussion focuses on their 

mathematical formulations and relevance to REITs markets, 

while avoiding redundancy with the problem context already 

covered in Section 1. 

 

3.1 Portfolio Optimization Frameworks 

The Black-Litterman model extends the traditional mean-

variance optimization by combining market equilibrium 

returns with investor views. Given a prior distribution of 

returns  where  represents equilibrium 

returns and  the covariance matrix, the model updates the 

expected returns as: 

 

  (1) 

 

Here,  and  encode investor views, while  quantifies 

view confidence [3]. For REITs, this formulation must 

account for sector-specific factors like occupancy rates and 

interest rate sensitivity, which introduce non-linear 

dependencies between  and macroeconomic variables [20]. 

 

3.2 Neural Network Architectures 

Three neural network architectures form the basis of our 

comparative analysis: 

1. Improved Backpropagation Networks employ 

adaptive learning rates  updated via: 

 

  (2) 

 

where  denotes the gradient at iteration , and  controls 

the adjustment rate [4]. This adaptation helps mitigate the 

vanishing gradient problem common in REITs time series. 

2. Radial Basis Function Networks utilize Gaussian 

activation functions: 

 

  (3) 

 

with centers  determined through orthogonal least squares 
[5]. The localized nature of RBFNs makes them suitable for 

modeling regime shifts in real estate markets. 

3. Convolutional Neural Networks apply 1D temporal 

convolutions to REITs return series: 

 

  (4) 

 

where  defines the kernel size capturing multi-scale 

dependencies [6]. The hierarchical feature extraction aligns 

with the nested volatility structure observed in REITs [21]. 

 

3.3 Clustering and Optimization Techniques 

The standard K-means objective minimizes: 

 

  (5) 

where  denotes clusters and  their centroids [7]. Our 

modification introduces density weights  to reduce 

outlier sensitivity: 

 

  (6) 

 

With  being the nearest centroid and  a scaling 

parameter. 

Particle Swarm Optimization updates particle velocities  

and positions  via: 

 

  (7) 

 

The inertia weight  typically decays linearly, but our 

adaptive variant ties it to population diversity: 

 

  (8) 

 

Where  measures swarm dispersion [8]. This prevents 

premature convergence when optimizing neural network 

parameters for REITs prediction. 

 

3.4 REITs Market Characteristics 

REITs exhibit three distinctive properties that influence 

model design: 

1. Lease Structure Effects: Fixed-term leases introduce 

autocorrelation in returns, violating the i.i.d. 

assumptions of traditional portfolio models [22]. 

2. Sector-Specific Risk Factors: Retail, office, and 

residential REITs respond differently to interest rate 

changes, necessitating cluster-specific view matrices  

in Equation 1 [23]. 

3. Illiquidity Premiums: Transaction costs create non-

convexities in the efficient frontier, requiring 

metaheuristics rather than gradient-based optimization 
[24]. 

These characteristics motivate our integration of neural 

networks with modified clustering and PSO, as detailed in 

Section 4. The architectures’ ability to capture non-linear 

temporal dependencies complements the Black-Litterman 

framework’s strength in incorporating investor intuition, 

while the algorithmic modifications address REITs-specific 

data challenges. 

 

4. Proposed Methodology 

The proposed methodology integrates modified machine 

learning techniques with financial optimization to enhance 

REITs portfolio performance. This section details the 

technical components and their interactions, focusing on the 

novel aspects that differentiate our approach from 

conventional methods. 

 

4.1 Overview of the Proposed Methodology 

The system architecture consists of three interconnected 

modules: data clustering, neural network prediction, and 

portfolio optimization. Figure 1 illustrates the workflow, 

where REITs data undergoes preprocessing before being fed 

into the neural networks, whose outputs inform the Black-

Litterman model. 
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Fig 1: Portfolio Optimization System Architecture 

 

The modified K-means algorithm first clusters REITs based 

on risk-return characteristics, reducing dimensionality and 

noise. These clusters then serve as inputs to three neural 

network variants—Improved Backpropagation, RBFN, and 

CNN—each trained to predict future returns. A modified 

PSO algorithm optimizes the neural network parameters, 

dynamically adjusting exploration-exploitation tradeoffs. 

Finally, the predictions are integrated into the Black-

Litterman model to generate optimal portfolio weights, with 

the entire process iteratively updated in rolling windows to 

adapt to market changes. 

 

4.2 Data Clustering and Neural Network Training 

The clustering phase employs a density-weighted K-means 

variant that modifies the standard objective function: 

 

  (9) 

 

Where  represents the adaptive weight for data point , 

calculated as: 

 

  (10) 

 

Here,  denotes the nearest centroid and  controls the 

weight decay rate. This modification reduces the influence 

of outliers prevalent in REITs data, particularly during 

market crises. 

The clustered data then trains three neural network 

architectures: 

1. Improved Backpropagation Network: Incorporates 

adaptive learning rates adjusted via: 

 

  (11) 

 

where  represents the gradient at iteration . The sign-

based update prevents oscillations in noisy REITs data. 

2. Radial Basis Function Network: Uses cluster 

centroids  from Equation 9 as initial RBF centers, 

with outputs computed as: 

 

  (12) 

 

The spread parameters  are optimized per cluster to 

capture varying sector volatilities. 

3. Convolutional Neural Network: Processes time-series 

data through 1D convolutions: 

 

  (13) 

 

Where  defines the kernel size and  denotes layer depth. 

The architecture includes dilated convolutions to capture 

multi-scale REITs dependencies. 

 

4.3 Optimization and Portfolio Management 

The modified PSO algorithm optimizes neural network 

parameters by adapting the velocity update rule: 

 

  (14) 

 

The inertia weight  varies based on swarm diversity: 

 

  (15) 

 

Where  measures the population’s dispersion. This 

adaptation prevents premature convergence when 

optimizing high-dimensional neural networks. 

The neural network predictions generate investor views  

for the Black-Litterman model: 

 

  (16) 

 

Here,  encodes cluster memberships from Equation 9, 

while  reflects prediction confidence from each neural 

network. The resulting expected returns  optimize 

portfolio weights  through quadratic programming: 

 

  (17) 

 

The entire pipeline executes in rolling windows, with cluster 

assignments, neural network parameters, and portfolio 

weights updated monthly to adapt to changing market 

conditions. This dynamic optimization framework captures 

the non-stationary nature of REITs markets while 

maintaining computational tractability. 

 

5. Experimental Setup 

This section details the experimental framework designed to 

evaluate the performance of the proposed methodology. We 

describe the datasets, baseline models, evaluation metrics, 

and implementation specifics to ensure reproducibility and 

rigorous comparison. 

 

5.1 Datasets and Preprocessing 

The study utilizes two primary datasets of U.S. REITs: 

1. Equity REITs Dataset: Contains monthly returns for 150 

equity REITs from 2000–2023, sourced from [25]. 

2. Macro-Financial Dataset: Includes 12 macroeconomic 

variables (e.g., 10-year Treasury yields, CPI) from [26]. 

Preprocessing involves: 

- Missing Data Imputation: Forward-filling for 

macroeconomic series and median imputation for REITs 

with <5% missingness. 

- Normalization: Min-max scaling for neural network 

inputs and z-score normalization for clustering. 
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- Stationarity Adjustment: First differencing non-

stationary macro variables (Augmented Dickey-Fuller test at 

p<0.05). 

The datasets are partitioned into: 

- Training (2000–2015): 60% 

- Validation (2016–2018): 20% 

- Test (2019–2023): 20% 

 

5.2 Baseline Models 

We compare against three established portfolio optimization 

approaches: 

1. Classical Black-Litterman (BL): Uses historical mean 

returns and CAPM equilibrium [3]. 

2. PCA-Based Clustering + MLP: Combines principal 

component analysis with multilayer perceptrons [27]. 

3. Hierarchical Risk Parity (HRP): Employs 

hierarchical clustering and inverse-variance weighting 
[28]. 

 

5.3 Implementation Details 

Neural Network Architectures: 

- Improved Backpropagation: 3 hidden layers (128–64–32 

nodes), adaptive learning rate (η=0.01, γ=0.1). 

- RBFN: 50 hidden units, spread σ∈[0.1,1.5] tuned per 

cluster. 

- CNN: 4 convolutional layers (kernel sizes 3–5–7–10), 

followed by LSTM layer. 

 

Optimization Parameters: 

- Modified K-means: k=8 clusters, σ=1.5 in Equation 10. 

- Modified PSO: Swarm size=50, ω_max=0.9, ω_min=0.4, 

c₁=c₂=1.7. 

 

Black-Litterman Configuration: 

- Confidence matrix Ω set to prediction error variance. 

- Risk aversion δ=2.5, τ=0.05. 

 

5.4 Evaluation Metrics 

Portfolio performance is assessed via: 

1. Risk-Adjusted Returns: 

- Annualized Sharpe Ratio: 

 

  (18) 

 

- Sortino Ratio (downside risk): 

 

  (19) 

 

2. Diversification Metrics: 

- Portfolio Turnover: 

 

  (20) 

 

- Effective N (diversification): 

 

  (21) 

 

 

3. Statistical Significance: 

- Diebold-Mariano tests for predictive accuracy differences 
[29]. 

- Bootstrap confidence intervals (10,000 resamples) for 

Sharpe ratios. 

All experiments are conducted in Python 3.9 using PyTorch 

for neural networks and CVXPY for convex optimization. 

 

6. Experimental Results 

This section presents the empirical evaluation of the 

proposed methodology, comparing the performance of the 

three neural network architectures—Improved 

Backpropagation, RBFN, and CNN—when integrated with 

modified K-means clustering and PSO optimization. The 

results are analyzed across predictive accuracy, portfolio 

performance, and computational efficiency metrics. 

 

6.1 Predictive Performance 

The neural networks’ ability to forecast REITs returns is 

evaluated using mean absolute error (MAE) and directional 

accuracy (DA) on the test set (2019–2023). Table 1 

summarizes the results, with the CNN achieving the lowest 

MAE (0.0142) and highest DA (72.3%), followed by RBFN 

(MAE=0.0158, DA=68.9%) and Improved Backpropagation 

(MAE=0.0165, DA=67.1%). 

 
Table 1: Predictive Accuracy of Neural Network Models 

 

Model MAE DA (%) Training Time (min) 

Improved Backpropagation 0.0165 67.1 45 

RBFN 0.0158 68.9 38 

CNN 0.0142 72.3 62 

 

The CNN’s superior performance can be attributed to its 

ability to capture multi-scale temporal dependencies in 

REITs returns, as illustrated in Figure 2, which shows actual 

vs. predicted returns for each model. The CNN predictions 

(blue) closely track the actual returns (black), particularly 

during volatile periods (e.g., 2020–2021), while the other 

models exhibit larger deviations. 

 

 
 

Fig 2: Actual vs. predicted REITs returns for Improved 

Backpropagation (red), RBFN (green), and CNN (blue) models 

 

6.2 Portfolio Optimization Results 

The neural network predictions are integrated into the 

Black-Litterman model to construct optimized portfolios. 

Table 2 compares the annualized Sharpe and Sortino ratios 

across methods, with the CNN-based approach achieving 

the highest risk-adjusted returns (Sharpe=1.48, 

Sortino=2.01). The classical Black-Litterman model 
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(Sharpe=1.12) and PCA+MLP (Sharpe=1.25) underperform 

the proposed methods, while HRP (Sharpe=1.09) shows 

limited adaptability to REITs dynamics. 

 
Table 2: Portfolio Performance Metrics (2019–2023) 

 

Method 
Sharpe 

Ratio 

Sortino 

Ratio 

Turnover 

(%) 

Effective 

N 

Classical BL 1.12 1.54 18.7 9.2 

PCA + MLP 1.25 1.72 22.3 8.6 

HRP 1.09 1.49 12.1 14.5 

Proposed 

(Backprop) 
1.36 1.85 20.4 10.1 

Proposed (RBFN) 1.42 1.93 19.8 9.8 

Proposed (CNN) 1.48 2.01 21.2 8.9 

 

Figure 3 visualizes the efficient frontiers for each method, 

demonstrating that the CNN-based portfolio (blue) 

dominates others at all risk levels. The classical BL (red) 

and HRP (green) frontiers lie below, indicating suboptimal 

risk-return tradeoffs. 

 

 
 

Fig 3: Efficient frontiers for portfolios optimized using classical 

BL (red), HRP (green), and the proposed CNN-based method 

(blue) 

 

6.3 Ablation Study 

To isolate the contributions of the modified K-means and 

PSO algorithms, we conduct an ablation study comparing 

the full model against two variants: 

1. Standard K-means + PSO: Uses traditional clustering 

and PSO without modifications. 

2. Modified K-means Only: Retains density weighting but 

uses standard PSO. 

Table 3 shows that the full model (Modified K-means + 

Modified PSO) achieves the highest Sharpe ratio (1.48), 

while the standard variant (1.29) suffers from noisy clusters 

and premature convergence. The modified K-means alone 

(1.38) improves robustness but lacks the fine-tuning benefits 

of adaptive PSO. 

 
Table 3: Ablation Study Results 

 

Variant 
Sharpe 

Ratio 
MAE 

Training 

Iterations 

Standard K-means + 

Standard PSO 
1.29 0.0159 120 

Modified K-means + 

Standard PSO 
1.38 0.0151 135 

Modified K-means + 

Modified PSO 
1.48 0.0142 98 

The modified PSO reduces training iterations by 27% 

compared to standard PSO, confirming its efficiency in 

navigating high-dimensional parameter spaces. This aligns 

with findings from [8], where adaptive inertia improved 

convergence in non-convex optimization. 

 

6.4 Computational Efficiency 

While the CNN delivers superior performance, its training 

time (62 minutes) exceeds RBFN (38 minutes) and 

Improved Backpropagation (45 minutes). However, the 

monthly retraining requirement (≈1 hour) remains practical 

for institutional portfolio management. The modified PSO 

further reduces runtime by 18% versus grid search 

hyperparameter tuning. 

 

7. Conclusion 

The study presents a comprehensive framework for REITs 

portfolio optimization by integrating modified machine 

learning techniques with the Black-Litterman model. The 

proposed methodology addresses key limitations of 

traditional approaches, particularly their inability to capture 

non-linear dependencies and adapt to dynamic market 

conditions. The modified K-means clustering enhances 

robustness against noise and outliers, while the adaptive 

PSO optimizes neural network parameters efficiently, 

ensuring convergence in high-dimensional spaces. Among 

the three neural architectures evaluated, the CNN 

demonstrates superior predictive accuracy, attributed to its 

capacity to model multi-scale temporal patterns in REITs 

returns. 

Empirical results confirm that the CNN-based approach 

outperforms classical methods, achieving higher risk-

adjusted returns (Sharpe ratio of 1.48) and better downside 

protection (Sortino ratio of 2.01). The ablation study further 

validates the contributions of the algorithmic modifications, 

showing that the full model with both modified K-means 

and PSO delivers significant improvements over baseline 

variants. While computational costs remain a consideration, 

the monthly retraining cycle proves practical for institutional 

portfolio management. 

The framework’s adaptability extends beyond REITs, with 

potential applications in private real estate funds, multi-asset 

portfolios, and ESG-integrated strategies. However, 

challenges such as dynamic cluster selection, model 

explainability, and systemic risk implications warrant 

further investigation. Future research should explore hybrid 

architectures, meta-learning for optimization initialization, 

and ethical safeguards to enhance both performance and 

transparency. 

By bridging machine learning with financial optimization, 

this work provides practitioners with a data-driven tool for 

REITs portfolio management. The integration of predictive 

modeling with dynamic asset allocation offers a scalable 

solution to navigate the complexities of real estate markets, 

balancing return objectives with risk constraints. The 

findings underscore the value of combining domain-specific 

algorithmic innovations with neural networks, setting a 

foundation for adaptive investment strategies in an evolving 

financial landscape. 
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