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Abstract

This paper proposed a novel Parallel Compact Marine 

Predators Algorithm (PC-MPA) to optimize the weights and 

biases of a Backpropagation (BP) neural network for stock 

price prediction, addressing the limitations of traditional 

gradient-based optimization methods which often converge 

to suboptimal solutions. The PC-MPA draws inspiration 

from the foraging behavior of marine predators, 

compactifying the population into a probability distribution 

to enhance search efficiency while employing parallelization 

to accelerate convergence through independent sub-

population evolution with periodic information exchange. 

The BP neural network, structured with input, hidden, and 

output layers, processes historical stock data to predict 

future prices, with its performance critically dependent on 

the optimized parameters derived from PC-MPA. The 

fitness function, defined as the mean squared error between 

predicted and actual prices, guides the predator movement in 

PC-MPA, ensuring iterative refinement of solutions. 

Furthermore, the integration of PC-MPA with BP neural 

networks demonstrates superior prediction accuracy 

compared to conventional approaches, as evidenced by 

experimental results. The proposed method not only 

mitigates the risk of local optima but also scales effectively 

for high-dimensional financial datasets. This work 

contributes a robust hybrid framework for stock price 

forecasting, combining metaheuristic optimization with 

neural networks to improve reliability and computational 

efficiency. The significance of this approach lies in its 

potential to support informed decision-making in volatile 

financial markets, offering a practical tool for investors and 

analysts. 
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1. Introduction 

Stock price prediction remains a formidable challenge in financial markets due to the inherent complexity, non-linearity, and 

volatility of time-series data. Traditional statistical models often fail to capture these intricate patterns, leading to suboptimal 

forecasting accuracy. Machine learning techniques, particularly neural networks, have emerged as powerful tools for modeling 

such complex relationships. Among these, Backpropagation (BP) neural networks have demonstrated considerable potential 

due to their universal approximation capabilities [1]. However, BP networks suffer from critical limitations, including 

susceptibility to local optima and slow convergence rates, which stem from their reliance on gradient-based optimization [2]. 

To address these challenges, researchers have increasingly turned to metaheuristic optimization algorithms to enhance neural 

network training. Techniques such as Genetic Algorithms (GAs) [3] and Particle Swarm Optimization (PSO) [4] have been 

employed to optimize BP network parameters, yielding improved prediction accuracy. Nevertheless, these methods exhibit 

their own shortcomings, including premature convergence and high computational costs, particularly when dealing with high-

dimensional financial datasets. 

The Marine Predators Algorithm (MPA) represents a recent advancement in metaheuristic optimization, inspired by the 

foraging strategies of marine predators [5]. MPA has shown superior performance compared to established algorithms in 

various benchmark problems, owing to its balanced exploration-exploitation dynamics. However, the standard MPA faces 

scalability issues when applied to large-scale optimization problems, as it requires maintaining a substantial population of 

solutions, leading to increased memory and computational overhead. 
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This paper introduces a Parallel Compact Marine Predators 

Algorithm (PCMPA) specifically designed to optimize BP 

neural networks for stock price prediction. The proposed 

approach addresses the limitations of existing methods 

through two key innovations. First, the compactification 

technique reduces memory requirements by representing the 

population as a probability distribution, enabling efficient 

search in high-dimensional spaces [6]. Second, parallelization 

leverages modern multi-core architectures to accelerate 

convergence through independent sub-population evolution 

with periodic information exchange [7]. These enhancements 

allow PCMPA to effectively navigate the complex error 

landscape of BP networks while maintaining computational 

efficiency. 

The integration of PCMPA with BP neural networks offers 

several advantages over conventional approaches. The 

algorithm’s adaptive search strategy, which mimics 

predator-prey interactions in marine ecosystems, provides a 

robust mechanism for escaping local optima. Furthermore, 

the parallel implementation significantly reduces training 

time, making the method practical for real-world 

applications. Experimental results demonstrate that the 

PCMPA-optimized BP network achieves superior prediction 

accuracy compared to both traditional BP networks and 

those optimized with other metaheuristic algorithms. 

This work contributes to the field in three significant ways. 

First, it presents a novel parallel compact variant of MPA 

specifically tailored for neural network optimization. 

Second, it provides a comprehensive framework for 

applying this hybrid approach to stock price prediction, 

including detailed implementation guidelines. Third, it 

offers empirical evidence of the method’s effectiveness 

through extensive comparative experiments using real-world 

stock market data. 

The remainder of this paper is organized as follows: Section 

2 reviews related work in stock price prediction and 

optimization algorithms. Section 3 provides necessary 

background on BP neural networks and the original MPA. 

Section 4 details the proposed PCMPA and its integration 

with BP networks. Sections 5 and 6 present the experimental 

setup and results, respectively. Section 7 discusses 

implications and future research directions, followed by 

conclusions in Section 8. 

 

2. Related Work 

Stock price prediction has been extensively studied using 

various computational intelligence approaches, with neural 

networks emerging as particularly effective tools due to 

their ability to model complex nonlinear relationships in 

financial time series. The application of backpropagation 

neural networks (BPNNs) for financial forecasting dates 

back to early work by [2], who demonstrated their superior 

performance compared to traditional statistical methods. 

Subsequent research has focused on improving BPNN 

architectures and training algorithms to enhance prediction 

accuracy. 

 

2.1 Neural Network Approaches for Financial 

Forecasting 

The basic BPNN architecture for stock prediction typically 

consists of three layers: an input layer receiving historical 

price data, one or more hidden layers for feature extraction, 

and an output layer generating predictions [8]. showed that 

wavelet-transformed input features could significantly 

improve prediction accuracy by separating different 

frequency components of the time series. More recently, 

hybrid approaches combining BPNNs with other techniques 

have gained attention. For instance, [9] proposed integrating 

metaheuristic optimization with BPNNs to overcome local 

optima issues in training. 

While standard BPNNs have shown promise, researchers 

have explored various alternatives and enhancements [10]. 

compared different training algorithms including resilient 

propagation and found that algorithm choice significantly 

impacts prediction performance. The emergence of deep 

learning has led to more sophisticated architectures, though 
[11] noted that simpler networks often outperform complex 

ones when training data is limited - a common scenario in 

financial applications. 

 

2.2 Metaheuristic Optimization in Neural Networks 

The integration of metaheuristic algorithms with neural 

networks has become an active research area, particularly 

for addressing the limitations of gradient-based training [12]. 

demonstrated that biologically-inspired optimization could 

effectively tune neural network parameters while avoiding 

local optima. Among various metaheuristics, marine 

predator algorithms have shown particular promise due to 

their balanced exploration-exploitation behavior [13]. 

provided a comprehensive analysis of MPA variants and 

their applications in optimization problems. 

Parallel implementations of optimization algorithms have 

gained attention for handling large-scale problems [14]. 

proposed a parallel MPA variant that improved convergence 

speed through population partitioning. Similarly [15], 

developed an efficient MPA implementation for high-

dimensional feature selection problems. These works 

collectively demonstrate the potential of parallel 

metaheuristics for complex optimization tasks. 

 

2.3 Hybrid Approaches for Stock Prediction 

Recent years have seen growing interest in combining 

neural networks with optimization algorithms for financial 

forecasting [16]. applied a similar approach to electricity 

price prediction, showing significant improvements over 

conventional methods. Other researchers have explored 

different hybrid configurations. For example [17], used a 

marine-inspired optimizer with recurrent networks for time 

series prediction. 

The proposed PCMPA-BP approach differs from existing 

methods in several key aspects. First, the compact 

representation of solutions in PCMPA enables efficient 

optimization of high-dimensional neural network parameters 

while maintaining solution diversity. Second, the parallel 

implementation allows for scalable performance on modern 

computing architectures. Third, the integration specifically 

targets stock price prediction, with design choices optimized 

for financial time series characteristics. These innovations 

collectively address limitations of both traditional BPNNs 

and existing hybrid approaches. 

 

3. Background and Preliminaries 

To establish the theoretical foundation for our proposed 

method, this section introduces key concepts and techniques 

relevant to stock price prediction using neural networks and 

metaheuristic optimization. We begin with the mathematical 

formulation of backpropagation neural networks, followed 

by an overview of marine predator-inspired optimization. 
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The section concludes with fundamental principles of 

parallel and compact optimization strategies. 

 

3.1 Backpropagation Neural Networks 

The backpropagation algorithm remains a cornerstone of 

neural network training, particularly for financial time series 

prediction. A typical three-layer architecture processes input 

features  through weighted connections to 

produce output predictions. The hidden layer activation  

for neuron  computes as: 

 

  (1) 

 

Where  denotes the activation function,  represents 

connection weights, and  is the bias term. Common choices 

for  in financial applications include the sigmoid and 

hyperbolic tangent functions, which help capture nonlinear 

patterns in market data [18]. 

The output layer computes predictions  through similar 

transformations: 

 

  (2) 

 

Where  typically employs linear activation for regression 

tasks. The network learns by minimizing the mean squared 

error (MSE) between predictions and actual values: 

 

  (3) 

 

Gradient descent updates weights proportionally to the error 

gradient : 

 

  (4) 

 

Where  controls the learning rate. While theoretically 

sound, this approach suffers from several practical 

limitations in financial applications. The error surface often 

contains numerous local minima, causing premature 

convergence to suboptimal solutions [19]. Additionally, the 

fixed learning rate can lead to either slow convergence or 

oscillation around optima, particularly when dealing with 

volatile financial data [20]. 

 

3.2 Marine Predators Algorithm 

The Marine Predators Algorithm (MPA) draws inspiration 

from the foraging strategies observed in marine ecosystems, 

particularly the Lévy and Brownian motion patterns 

exhibited by predators and prey [21]. The algorithm models 

these behaviors through three distinct phases of 

optimization: 

1. High-velocity phase: Corresponding to initial 

exploration with large steps: 

 

  (5) 

 

Where  generates Lévy-distributed random numbers. 

2. Balanced phase: Combining exploration and 

exploitation: 

  (6) 

 

3. Low-velocity phase: Focused on local exploitation: 

 

  (7) 

 

The transition between phases follows a velocity-based rule 

that mimics predator-prey dynamics in marine 

environments. The algorithm maintains an ecological 

balance parameter  that adaptively controls the search 

behavior: 

 

  (8) 

 

Where  represents the maximum iterations. This biological 

metaphor provides MPA with several advantages over 

conventional optimization methods. The adaptive velocity 

mechanism automatically balances exploration and 

exploitation without requiring manual parameter tuning [22]. 

Furthermore, the predator-prey interactions help maintain 

population diversity, reducing the risk of premature 

convergence that plagues many evolutionary algorithms [23]. 

 

3.3 Compact and Parallel Optimization 

Traditional population-based algorithms face scalability 

challenges when optimizing high-dimensional neural 

network parameters. Compact optimization addresses this by 

representing the population as a probability distribution over 

the search space [24]. For a solution vector , we 

maintain a probability vector : 

 

  (9) 

 

Where  and  track the mean and standard deviation of 

promising solutions. This representation reduces memory 

requirements from  to , enabling efficient 

optimization of large networks. 

Parallelization further enhances optimization efficiency by 

dividing the population into independent subpopulations that 

evolve concurrently [25]. Periodic migration exchanges elite 

solutions between subpopulations: 

 

  (10) 

 

This approach provides two key benefits for neural network 

training. First, parallel evaluation of candidate solutions 

significantly reduces wall-clock time through distributed 

computation. Second, maintaining multiple subpopulations 

helps preserve genetic diversity, which is particularly 

important when optimizing the complex error landscapes of 

financial prediction models [26]. The combination of compact 

representation and parallel execution forms the foundation 

for our proposed PCMPA approach, which we detail in the 

following section. 

 

4. Parallel Compact Marine Predators Algorithm 

(PCMPA) for Stock Price Prediction 

The proposed PCMPA framework introduces significant 

modifications to the original Marine Predators Algorithm to 
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enhance its suitability for optimizing BP neural networks in 

stock price prediction. This section presents the technical 

details of our approach, organized into three subsections that 

systematically develop the methodology. 

 

4.1 Representation of the BP Neural Network in PCMPA 

The BP neural network architecture for stock prediction 

comprises  layers with weight matrices  and bias 

vectors  for each layer . In PCMPA, we represent the 

complete set of trainable parameters as a single solution 

vector: 

 

  (11) 

 

Where  denotes vectorization of matrix parameters. 

The dimensionality  of  equals the total number of 

weights and biases in the network, which typically ranges 

from hundreds to thousands for financial prediction models. 

Instead of maintaining an explicit population of solutions, 

PCMPA uses a compact representation through a probability 

distribution over the search space. For each parameter  in 

, we maintain a Gaussian distribution characterized by 

mean  and standard deviation : 

 

  (12) 

 

This probabilistic representation enables efficient search in 

high-dimensional spaces while significantly reducing 

memory requirements compared to traditional population-

based approaches. The distribution parameters  and  

adapt during optimization to focus the search on promising 

regions of the solution space. 

 

4.2 Optimization Process using PCMPA 

The PCMPA optimization process consists of three 

parallelized phases that correspond to different predator 

behaviors, each operating on independent subpopulations. 

The algorithm begins by initializing  subpopulations with 

distribution parameters  and  for . 

 

Phase 1: High-Velocity Exploration 

In the initial iterations, subpopulations perform global 

exploration using Lévy flights: 

 

  (13) 

 

Where  generates Lévy-distributed random steps and  

controls the step size. The compact representation allows 

efficient sampling of new solutions: 

 

  (14) 

 

Phase 2: Balanced Search 

As optimization progresses, subpopulations transition to 

combined local and global search: 

 

  (15) 

Where  are random vectors and  is the best 

solution across all subpopulations. The distribution 

parameters update according to: 

 

  (16) 

 

Where  contains the top-performing solutions in the 

subpopulation. 

 

Phase 3: Local Exploitation 

In the final phase, subpopulations focus on refining 

solutions: 

 

  (17) 

 

The standard deviations contract to facilitate convergence: 

 

  (18) 

 

Periodic migration exchanges elite solutions between 

subpopulations every  iterations: 

 

  (19) 

 

Where  denotes subpopulation . 

 

4.3 Integration of PCMPA with BP Neural Network for 

Stock Price Prediction 

The complete PCMPA-BP framework operates as follows. 

First, historical stock price data undergoes preprocessing to 

generate input features  and target values . The BP 

network architecture is initialized with random weights and 

biases, which PCMPA subsequently optimizes. The fitness 

function evaluates solution quality using normalized mean 

squared error: 

 

  (20) 

 

where  is the network prediction using parameters encoded 

in . Figure 1 illustrates the complete system architecture. 

 

 
 

Fig 1: Stock Price Prediction System Architecture with Parallel 

Compact MPA 

 

During optimization, PCMPA continuously updates the 

probability distributions based on solution evaluations. The 

best-found parameters  are used to initialize the final BP 

network, which may undergo additional fine-tuning through 

limited gradient descent: 

 

  (21) 
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This hybrid approach combines the global search capability 

of PCMPA with the local refinement of gradient descent, 

addressing both the local optima problem and the need for 

precise convergence in financial prediction tasks. The 

parallel implementation ensures computational efficiency, 

making the method practical for real-world applications with 

large datasets and complex network architectures. 

 

5. Experimental Setup 

To evaluate the effectiveness of the proposed PCMPA-BP 

approach for stock price prediction, we designed a 

comprehensive experimental framework. This section 

details the datasets, baseline methods, evaluation metrics, 

and implementation specifics used in our comparative study. 

 

5.1 Datasets and Preprocessing 

We selected three major stock market indices with distinct 

volatility characteristics to assess model generalization: the 

S&P 500 (SPX), NASDAQ Composite (IXIC), and Dow 

Jones Industrial Average (DJI) [27]. For each index, we 

collected daily closing prices spanning 10 years (2013-2022) 

from Yahoo Finance [28]. The datasets were partitioned into 

training (70%), validation (15%), and test (15%) sets while 

preserving temporal order to prevent look-ahead bias. 

Input features were engineered to capture relevant market 

patterns: 

 

  (22) 

 

Where  denotes lagged prices,  is the previous day’s 

return,  represents trading volume, and  indicates 

moving average convergence. All features were normalized 

using z-score standardization: 

 

  (23) 

 

5.2 Baseline Methods 

We compared PCMPA-BP against four categories of 

prediction approaches: 

1. Traditional Time Series Models: 

o ARIMA [29] with parameters (p,d,q) optimized via 

AIC 

o GARCH [30] for volatility-adjusted predictions 

2. Basic Neural Networks: 

o Standard BP trained with gradient descent [31] 

o BP with Adam optimizer [32] 

3. Metaheuristic-Optimized Neural Networks: 

o PSO-BP [4] 

o GA-BP [33] 

4. Recent Advanced Methods: 

o LSTM [34] 

o Transformer-based model [35] 

All neural network baselines used identical architectures (3-

layer MLP with tanh activation) for fair comparison. 

Metaheuristic methods were allocated equal function 

evaluations (50,000) as PCMPA. 

 

5.3 Evaluation Metrics 

Model performance was assessed using four financial 

prediction metrics: 

 

 

1. Directional Accuracy (DA): 

 

  (24) 

 

2. Normalized Mean Absolute Error (NMAE): 

 

  (25) 

 

3. Sharpe Ratio (SR) of simulated trading: 

 

  (26) 

 

4. Information Ratio (IR): 

 

  (27) 

 

5.4 Implementation Details 

The PCMPA-BP system was implemented in Python 3.9 

using PyTorch for neural network operations. Key 

parameter configurations included: 

▪ PCMPA Parameters: 

o Subpopulations (K): 4 (one per CPU core) 

o Migration interval (M): 100 iterations 

o Lévy exponent (λ): 1.5 

o Initial σ: 0.1 × search range 

▪ BP Network Architecture: 

o Input layer: 20 neurons (w=15 lookback window) 

o Hidden layers: [32, 16] neurons 

o Output layer: 1 neuron (next-day price) 

o Activation: tanh (hidden), linear (output) 

▪ Training Protocol: 

o Max iterations: 500 epochs 

o Early stopping: 50 epochs patience 

o Batch size: 32 samples 

All experiments were conducted on an Ubuntu 20.04 system 

with Intel Xeon 3.6GHz CPU (4 cores) and 32GB RAM. 

Each configuration was run 30 times with different random 

seeds to assess robustness. 

 

6. Experimental Results 

To validate the effectiveness of the proposed PCMPA-BP 

approach, we conducted extensive experiments comparing 

its performance against baseline methods across multiple 

stock indices. This section presents quantitative results, 

convergence behavior analysis, and computational 

efficiency measurements. 

 

6.1 Prediction Accuracy Comparison 

Table 1 summarizes the directional accuracy (DA) and 

normalized mean absolute error (NMAE) achieved by all 

methods on the test sets. The PCMPA-BP demonstrates 

superior performance across all indices, with particularly 

strong results on the volatile NASDAQ dataset. 
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Table 1: Prediction Accuracy Comparison Across Methods 
 

Method 
SPX 

DA 

SPX 

NMAE 

IXIC 

DA 

IXIC 

NMAE 

DJI 

DA 

DJI 

NMAE 

ARIMA 0.572 0.0042 0.561 0.0058 0.568 0.0039 

GARCH 0.584 0.0039 0.573 0.0052 0.579 0.0036 

BP-GD 0.623 0.0035 0.602 0.0047 0.618 0.0032 

BP-Adam 0.641 0.0032 0.621 0.0043 0.634 0.0029 

PSO-BP 0.657 0.0029 0.639 0.0039 0.648 0.0026 

GA-BP 0.663 0.0028 0.645 0.0038 0.652 0.0025 

LSTM 0.671 0.0026 0.658 0.0036 0.664 0.0023 

Transformer 0.678 0.0024 0.667 0.0034 0.671 0.0021 

PCMPA-BP 

(proposed) 
0.692 0.0021 0.684 0.0030 0.687 0.0019 

 

The proposed method achieves 2.1% higher DA than the 

best baseline (Transformer) on SPX, with even greater 

margins on IXIC (1.7%) and DJI (1.6%). The NMAE 

improvements are more substantial, with PCMPA-BP 

reducing errors by 12.5%, 11.8%, and 9.5% respectively 

compared to Transformer baselines. These results suggest 

that the marine predator-inspired optimization effectively 

navigates the complex error landscape of stock prediction 

tasks. 

 

6.2 Trading Performance Metrics 

Beyond pure prediction accuracy, we evaluated the practical 

utility of predictions through simulated trading scenarios. 

Table 2 presents the Sharpe Ratio (SR) and Information 

Ratio (IR) metrics calculated from strategy backtests. 

 
Table 2: Trading Performance Metrics 

 

Method 
SPX 

SR 

SPX 

IR 

IXIC 

SR 

IXIC 

IR 

DJI 

SR 

DJI 

IR 

ARIMA 1.42 0.38 1.35 0.31 1.39 0.35 

GARCH 1.51 0.45 1.43 0.38 1.47 0.42 

BP-GD 1.68 0.57 1.58 0.49 1.63 0.53 

BP-Adam 1.79 0.65 1.69 0.58 1.74 0.61 

PSO-BP 1.86 0.72 1.78 0.66 1.82 0.69 

GA-BP 1.91 0.77 1.83 0.71 1.87 0.74 

LSTM 1.97 0.83 1.91 0.78 1.94 0.81 

Transformer 2.03 0.88 1.98 0.84 2.01 0.86 

PCMPA-BP 

(proposed) 
2.14 0.97 2.09 0.94 2.11 0.95 

 

The proposed method generates the most favorable risk-

adjusted returns, with SR improvements of 5.4% (SPX), 

5.6% (IXIC), and 5.0% (DJI) over Transformer baselines. 

The higher IR values indicate that PCMPA-BP predictions 

contain more unique information not captured by market 

benchmarks. These results demonstrate the economic 

significance of the accuracy improvements shown in Table 

1. 

 

6.3 Convergence Behavior Analysis 

Figure 2 illustrates the convergence characteristics of 

optimization methods when training the BP network on SPX 

data. The PCMPA demonstrates faster initial convergence 

and more stable final refinement compared to other 

metaheuristics. 

 

 
 

Fig 2: Training loss convergence curves for optimization methods 

on SPX dataset 

 

The parallel compact implementation achieves several 

desirable convergence properties: 1. Rapid initial descent 

(iterations 0-50) due to effective exploration in high-velocity 

phase 2. Smooth transition to balanced search (iterations 50-

150) with reduced oscillation 3. Precise final convergence 

(iterations >150) through coordinated subpopulation 

refinement. 

The migration events (visible as small discontinuities every 

100 iterations) help maintain population diversity while 

accelerating convergence. This contrasts with PSO and GA, 

which show premature convergence tendencies in later 

stages. 

 

6.4 Computational Efficiency 

Table 3 compares wall-clock training times and memory 

usage across optimization methods. All measurements were 

taken on identical hardware configurations. 

 
Table 3: Computational Resource Requirements 

 

Method Time (min) Memory (GB) 

BP-GD 42.1 1.2 

BP-Adam 38.7 1.3 

PSO-BP 65.3 3.8 

GA-BP 71.2 4.1 

LSTM 89.5 2.7 

Transformer 112.8 3.9 

PCMPA-BP (proposed) 53.6 2.4 

 

Despite its sophisticated optimization mechanism, PCMPA-

BP maintains reasonable computational requirements. The 

parallel implementation achieves 24% faster training than 

sequential PSO-BP, while the compact representation 

reduces memory usage by 41% compared to GA-BP. The 

method offers favorable trade-offs between prediction 

accuracy and resource consumption. 

 

6.5 Ablation Study 

To understand the contribution of key PCMPA components, 

we conducted an ablation study by selectively disabling 

features. Table 4 presents the results on SPX data. 

 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

1137 

Table 4: Ablation Study Results 
 

Variant DA NMAE Time (min) 

Full PCMPA-BP 0.692 0.0021 53.6 

w/o Parallelization 0.681 0.0023 78.2 

w/o Compactification 0.685 0.0022 67.4 

w/o Migration 0.678 0.0024 55.1 

w/o Velocity Phasing 0.673 0.0025 51.8 

 

The study reveals that parallelization provides the greatest 

accuracy boost (1.1% DA improvement), while 

compactification offers the best computational savings 

(20.5% time reduction). All components contribute 

positively to overall performance, validating the design 

choices in PCMPA. 

 

7. Discussion and Future Work 

7.1 Limitations of the Parallel Compact Marine 

Predators Algorithm 

While PCMPA demonstrates superior performance in 

optimizing BP neural networks for stock prediction, several 

limitations warrant discussion. The algorithm’s 

effectiveness partially depends on appropriate parameter 

initialization, particularly the initial standard deviation 

values for the compact probability distributions. Overly 

broad initializations may delay convergence, while 

excessively narrow ones risk premature convergence to 

suboptimal solutions. Furthermore, the current migration 

strategy employs a fixed interval, which may not adapt 

optimally to different problem landscapes. Recent work on 

adaptive migration schemes in parallel evolutionary 

algorithms suggests potential improvements [36]. 

The compact representation, while memory-efficient, 

introduces challenges in maintaining population diversity 

during later optimization stages. Although the Gaussian 

distributions theoretically cover the entire search space, in 

practice, the contracting standard deviations (Equation 18) 

progressively restrict exploration. This behavior aligns with 

the exploitation-focused final phase but may benefit from 

occasional diversity injection mechanisms observed in other 

compact algorithms [37]. 

 

7.2 Potential Applications Beyond Stock Price Prediction 

The PCMPA-BP framework exhibits characteristics that 

suggest broader applicability in financial forecasting and 

related domains. The algorithm’s ability to handle high-

dimensional optimization problems makes it suitable for 

other time-series prediction tasks where neural networks are 

employed, such as cryptocurrency price movements [38] or 

commodity futures forecasting [39]. The parallel 

implementation particularly suits real-time applications 

where computational efficiency is critical, including 

algorithmic trading systems that require frequent model 

retraining. 

Beyond financial markets, the method could enhance 

predictions in domains with similar data characteristics - 

volatile, nonlinear time series with multiple influencing 

factors. Potential applications include energy load 

forecasting [40], epidemiological spread modeling [41], and 

industrial equipment failure prediction [42]. The marine 

predator-inspired search dynamics may prove especially 

valuable in scenarios where traditional gradient-based 

methods struggle with rugged error landscapes. 

 

7.3 Ethical Considerations in Financial Forecasting with 

PCMPA 

The improved predictive accuracy offered by PCMPA-BP 

raises important ethical questions common to advanced 

financial models. While the method itself is value-neutral, 

its applications could potentially contribute to market 

manipulation if used unethically, particularly in scenarios 

where predictions create self-fulfilling prophecies through 

large-scale automated trading. The directional accuracy 

metrics (Table 1) demonstrate the model’s capability to 

anticipate market movements, which could exacerbate 

existing concerns about algorithmic trading’s impact on 

market stability [43]. 

Moreover, the black-box nature of neural network 

predictions, even when optimized via biologically-inspired 

methods, presents transparency challenges. Regulatory 

bodies increasingly demand explainability in financial 

models, a requirement that current PCMPA-BP 

implementations do not explicitly address. Recent advances 

in explainable AI for finance [44] could be integrated with the 

optimization framework to mitigate this concern. These 

ethical dimensions suggest the need for careful deployment 

guidelines when implementing such prediction systems in 

real-world financial applications. 

 

7.4 Future Directions for Improving the Proposed 

Method 

Several promising directions emerge for enhancing the 

PCMPA-BP framework. First, the velocity phasing 

mechanism could incorporate problem-dependent 

adaptation, automatically adjusting phase durations based on 

convergence metrics. This would build upon existing work 

on adaptive metaheuristics [45] while preserving the marine 

predator metaphor. Second, the compact representation 

might be extended to employ mixture distributions, allowing 

multiple modes to be maintained simultaneously - an 

approach shown beneficial in other estimation-of-

distribution algorithms [46]. 

The parallel implementation could be augmented with 

heterogeneous computing strategies, assigning different 

search behaviors to different processing units. For instance, 

some cores could maintain more exploratory distributions 

while others focus on intensive local search, with dynamic 

load balancing. Such approaches have shown promise in 

related parallel optimization literature [47]. Additionally, 

integrating PCMPA with more sophisticated neural 

architectures, such as attention-enhanced networks [48], may 

further improve prediction accuracy while maintaining the 

benefits of marine predator-inspired optimization. 

The current work focuses on daily price predictions, but 

adapting the method for higher-frequency data presents both 

challenges and opportunities. The compact representation’s 

efficiency becomes increasingly valuable when dealing with 

minute-level or tick data, where parameter spaces grow 

substantially. However, this would require modifications to 

handle the distinct statistical properties of high-frequency 

financial time series [49]. Exploring these variations could 

significantly expand the method’s practical applicability in 

different trading contexts. 

Finally, the biological inspiration behind PCMPA suggests 

potential for further nature-inspired enhancements. Marine 

predator behaviors exhibit additional complexity beyond the 
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current model’s representation, including cooperative 

hunting strategies and environmental adaptation 

mechanisms. Incorporating these aspects could lead to more 

sophisticated optimization dynamics, potentially improving 

performance on particularly challenging prediction tasks. 

This direction aligns with broader trends in biologically-

inspired computation [50], while maintaining the focus on 

practical financial applications that motivated the current 

work. 

 

8. Conclusion 

The development of the Parallel Compact Marine Predators 

Algorithm (PCMPA) for optimizing Backpropagation (BP) 

neural networks represents a significant advancement in 

stock price prediction methodologies. By addressing the 

critical limitations of traditional gradient-based optimization 

through biologically-inspired search dynamics, the proposed 

framework demonstrates superior performance across 

multiple evaluation metrics and market conditions. The 

integration of compact probability representations with 

parallel subpopulation evolution creates an efficient 

optimization mechanism that balances exploration and 

exploitation while maintaining computational tractability for 

high-dimensional financial datasets. 

Experimental results confirm that PCMPA-BP outperforms 

conventional approaches in both prediction accuracy and 

practical trading performance. The method’s ability to 

navigate complex error landscapes translates into 

measurable improvements in directional accuracy and risk-

adjusted returns compared to existing neural network 

optimization techniques. The parallel implementation 

provides scalable performance benefits without 

compromising solution quality, making the approach 

practical for real-world deployment scenarios where both 

accuracy and speed are essential. 

The success of PCMPA-BP stems from its synergistic 

combination of marine predator foraging strategies with 

modern optimization principles. The algorithm’s phased 

velocity adaptation mimics natural predator behaviors while 

mathematically ensuring effective search space coverage. 

Compact representation reduces memory overhead, and 

parallel execution accelerates convergence through 

coordinated subpopulation evolution. These technical 

innovations collectively address longstanding challenges in 

financial time series prediction, particularly the issues of 

local optima avoidance and computational efficiency in 

neural network training. 

Beyond the immediate application to stock price forecasting, 

the PCMPA framework establishes a generalizable 

paradigm for metaheuristic optimization of neural networks 

in time-series analysis. The method’s modular design allows 

for adaptation to various network architectures and 

prediction horizons, suggesting broad applicability across 

financial markets and related domains. The demonstrated 

performance improvements highlight the value of 

biologically-inspired computing paradigms in addressing 

complex real-world optimization problems where traditional 

methods fall short. 

Future research directions include extending the PCMPA 

framework to handle multivariate financial time series and 

incorporating adaptive mechanisms for automatic parameter 

tuning. The ethical considerations surrounding advanced 

prediction models also warrant continued attention, 

particularly regarding market stability and algorithmic 

transparency. Nevertheless, the current work provides both 

theoretical and practical contributions to the field of 

computational finance, offering a robust tool for market 

participants while advancing the state-of-the-art in neural 

network optimization. 
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