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Abstract

This paper proposed a novel Parallel Compact Marine
Predators Algorithm (PC-MPA) to optimize the weights and
biases of a Backpropagation (BP) neural network for stock
price prediction, addressing the limitations of traditional
gradient-based optimization methods which often converge
to suboptimal solutions. The PC-MPA draws inspiration
from the foraging behavior of marine predators,
compactifying the population into a probability distribution
to enhance search efficiency while employing parallelization
to accelerate convergence through independent sub-
population evolution with periodic information exchange.
The BP neural network, structured with input, hidden, and
output layers, processes historical stock data to predict
future prices, with its performance critically dependent on
the optimized parameters derived from PC-MPA. The

predicted and actual prices, guides the predator movement in
PC-MPA, ensuring iterative refinement of solutions.
Furthermore, the integration of PC-MPA with BP neural
networks demonstrates superior prediction accuracy
compared to conventional approaches, as evidenced by
experimental results. The proposed method not only
mitigates the risk of local optima but also scales effectively
for high-dimensional financial datasets. This work
contributes a robust hybrid framework for stock price
forecasting, combining metaheuristic optimization with
neural networks to improve reliability and computational
efficiency. The significance of this approach lies in its
potential to support informed decision-making in volatile
financial markets, offering a practical tool for investors and
analysts.

fitness function, defined as the mean squared error between
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1. Introduction

Stock price prediction remains a formidable challenge in financial markets due to the inherent complexity, non-linearity, and
volatility of time-series data. Traditional statistical models often fail to capture these intricate patterns, leading to suboptimal
forecasting accuracy. Machine learning techniques, particularly neural networks, have emerged as powerful tools for modeling
such complex relationships. Among these, Backpropagation (BP) neural networks have demonstrated considerable potential
due to their universal approximation capabilities ['l. However, BP networks suffer from critical limitations, including
susceptibility to local optima and slow convergence rates, which stem from their reliance on gradient-based optimization 2,

To address these challenges, researchers have increasingly turned to metaheuristic optimization algorithms to enhance neural
network training. Techniques such as Genetic Algorithms (GAs) B! and Particle Swarm Optimization (PSO) ™ have been
employed to optimize BP network parameters, yielding improved prediction accuracy. Nevertheless, these methods exhibit
their own shortcomings, including premature convergence and high computational costs, particularly when dealing with high-
dimensional financial datasets.

The Marine Predators Algorithm (MPA) represents a recent advancement in metaheuristic optimization, inspired by the
foraging strategies of marine predators [*), MPA has shown superior performance compared to established algorithms in
various benchmark problems, owing to its balanced exploration-exploitation dynamics. However, the standard MPA faces
scalability issues when applied to large-scale optimization problems, as it requires maintaining a substantial population of
solutions, leading to increased memory and computational overhead.
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This paper introduces a Parallel Compact Marine Predators
Algorithm (PCMPA) specifically designed to optimize BP
neural networks for stock price prediction. The proposed
approach addresses the limitations of existing methods
through two key innovations. First, the compactification
technique reduces memory requirements by representing the
population as a probability distribution, enabling efficient
search in high-dimensional spaces . Second, parallelization
leverages modern multi-core architectures to accelerate
convergence through independent sub-population evolution
with periodic information exchange [7l. These enhancements
allow PCMPA to effectively navigate the complex error
landscape of BP networks while maintaining computational
efficiency.

The integration of PCMPA with BP neural networks offers
several advantages over conventional approaches. The
algorithm’s adaptive search strategy, which mimics
predator-prey interactions in marine ecosystems, provides a
robust mechanism for escaping local optima. Furthermore,
the parallel implementation significantly reduces training
time, making the method practical for real-world
applications. Experimental results demonstrate that the
PCMPA-optimized BP network achieves superior prediction
accuracy compared to both traditional BP networks and
those optimized with other metaheuristic algorithms.

This work contributes to the field in three significant ways.
First, it presents a novel parallel compact variant of MPA
specifically tailored for neural network optimization.
Second, it provides a comprehensive framework for
applying this hybrid approach to stock price prediction,
including detailed implementation guidelines. Third, it
offers empirical evidence of the method’s effectiveness
through extensive comparative experiments using real-world
stock market data.

The remainder of this paper is organized as follows: Section
2 reviews related work in stock price prediction and
optimization algorithms. Section 3 provides necessary
background on BP neural networks and the original MPA.
Section 4 details the proposed PCMPA and its integration
with BP networks. Sections 5 and 6 present the experimental
setup and results, respectively. Section 7 discusses
implications and future research directions, followed by
conclusions in Section 8.

2. Related Work

Stock price prediction has been extensively studied using
various computational intelligence approaches, with neural
networks emerging as particularly effective tools due to
their ability to model complex nonlinear relationships in
financial time series. The application of backpropagation
neural networks (BPNNs) for financial forecasting dates
back to early work by 2, who demonstrated their superior
performance compared to traditional statistical methods.
Subsequent research has focused on improving BPNN
architectures and training algorithms to enhance prediction
accuracy.

2.1 Neural
Forecasting
The basic BPNN architecture for stock prediction typically
consists of three layers: an input layer receiving historical
price data, one or more hidden layers for feature extraction,
and an output layer generating predictions . showed that
wavelet-transformed input features could significantly

Network Approaches for Financial
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improve prediction accuracy by separating different
frequency components of the time series. More recently,
hybrid approaches combining BPNNs with other techniques
have gained attention. For instance, ! proposed integrating
metaheuristic optimization with BPNNs to overcome local
optima issues in training.

While standard BPNNs have shown promise, researchers
have explored various alternatives and enhancements [%,
compared different training algorithms including resilient
propagation and found that algorithm choice significantly
impacts prediction performance. The emergence of deep
learning has led to more sophisticated architectures, though
11 noted that simpler networks often outperform complex
ones when training data is limited - a common scenario in
financial applications.

2.2 Metaheuristic Optimization in Neural Networks

The integration of metaheuristic algorithms with neural
networks has become an active research area, particularly
for addressing the limitations of gradient-based training 1?1,
demonstrated that biologically-inspired optimization could
effectively tune neural network parameters while avoiding
local optima. Among various metaheuristics, marine
predator algorithms have shown particular promise due to
their balanced exploration-exploitation behavior (3,
provided a comprehensive analysis of MPA variants and
their applications in optimization problems.

Parallel implementations of optimization algorithms have
gained attention for handling large-scale problems [4],
proposed a parallel MPA variant that improved convergence
speed through population partitioning. Similarly [,
developed an efficient MPA implementation for high-
dimensional feature selection problems. These works
collectively demonstrate the potential of parallel
metaheuristics for complex optimization tasks.

2.3 Hybrid Approaches for Stock Prediction

Recent years have seen growing interest in combining
neural networks with optimization algorithms for financial
forecasting 1%, applied a similar approach to electricity
price prediction, showing significant improvements over
conventional methods. Other researchers have explored
different hybrid configurations. For example ['7), used a
marine-inspired optimizer with recurrent networks for time
series prediction.

The proposed PCMPA-BP approach differs from existing
methods in several key aspects. First, the compact
representation of solutions in PCMPA enables efficient
optimization of high-dimensional neural network parameters
while maintaining solution diversity. Second, the parallel
implementation allows for scalable performance on modern
computing architectures. Third, the integration specifically
targets stock price prediction, with design choices optimized
for financial time series characteristics. These innovations
collectively address limitations of both traditional BPNNs
and existing hybrid approaches.

3. Background and Preliminaries

To establish the theoretical foundation for our proposed
method, this section introduces key concepts and techniques
relevant to stock price prediction using neural networks and
metaheuristic optimization. We begin with the mathematical
formulation of backpropagation neural networks, followed
by an overview of marine predator-inspired optimization.
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The section concludes with fundamental principles of
parallel and compact optimization strategies.

3.1 Backpropagation Neural Networks

The backpropagation algorithm remains a cornerstone of
neural network training, particularly for financial time series
prediction. A typical three-layer architecture processes input
features X =[x, %z, ....xu] through weighted connections to
produce output predictions. The hidden layer activation by

for neuron J computes as:

n
hi = U(Z Wij X + b])
i=1

Where o denotes the activation function, "ii represents
connection weights, and i is the bias term. Common choices
for o in financial applications include the sigmoid and
hyperbolic tangent functions, which help capture nonlinear
patterns in market data (131,

)

The output layer computes predictions ¥ through similar
transformations:

j‘r=¢(ivlh]+c)

= 2
Where # typically employs linear activation for regression
tasks. The network learns by minimizing the mean squared
error (MSE) between predictions and actual values:

N
1
_* o2
L= NZ()’k i)
k=1

3

Gradient descent updates weights proportionally to the error
gradient V.L:

Aw. = aL
Where T controls the learning rate. While theoretically
sound, this approach suffers from several practical
limitations in financial applications. The error surface often
contains numerous local minima, causing premature
convergence to suboptimal solutions ['°]. Additionally, the
fixed learning rate can lead to either slow convergence or
oscillation around optima, particularly when dealing with
volatile financial data 2%,

3.2 Marine Predators Algorithm

The Marine Predators Algorithm (MPA) draws inspiration
from the foraging strategies observed in marine ecosystems,
particularly the Lévy and Brownian motion patterns
exhibited by predators and prey ?!1. The algorithm models
these behaviors through three distinct phases of
optimization:

1. High-velocity phase: Corresponding to initial
exploration with large steps:
)(11:-'-:L = Xf + L(A-) ® (Xbest - x}) (5)

Where £ generates Lévy-distributed random numbers.
2. Balanced phase: Combining exploration and
exploitation:
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X' =X{ + NM(0,1) ® Kpest — X{) ©6)
3. Low-velocity phase: Focused on local exploitation:

—X!
X = X! +aU(0,1) ® (7)‘"‘:‘ x,)

ratio (7)

The transition between phases follows a velocity-based rule
that mimics predator-prey dynamics in  marine
environments. The algorithm maintains an ecological

f,

balance parameter ‘ratic that adaptively controls the search

behavior:

t
fra io — €X (_ _)
t p T ®)

Where T represents the maximum iterations. This biological
metaphor provides MPA with several advantages over
conventional optimization methods. The adaptive velocity
mechanism automatically balances exploration and
exploitation without requiring manual parameter tuning 21,
Furthermore, the predator-prey interactions help maintain
population diversity, reducing the risk of premature
convergence that plagues many evolutionary algorithms (3,

3.3 Compact and Parallel Optimization

Traditional population-based algorithms face scalability
challenges when optimizing high-dimensional neural
network parameters. Compact optimization addresses this by
representing the population as a probability distribution over
the search space 4. For a solution vector x € R% | we
maintain a probability vector P:

1
1+ exp(—k(y; — x;)/07) )

Pi

Where Hi and i track the mean and standard deviation of
promising solutions. This representation reduces memory
requirements from O(Nd) to 0(d) , enabling efficient
optimization of large networks.

Parallelization further enhances optimization efficiency by
dividing the population into independent subpopulations that
evolve concurrently 2], Periodic migration exchanges elite
solutions between subpopulations:

Xmig = {Xilf(xi) = fthreshold} (10)

This approach provides two key benefits for neural network
training. First, parallel evaluation of candidate solutions
significantly reduces wall-clock time through distributed
computation. Second, maintaining multiple subpopulations
helps preserve genetic diversity, which is particularly
important when optimizing the complex error landscapes of
financial prediction models %), The combination of compact
representation and parallel execution forms the foundation
for our proposed PCMPA approach, which we detail in the
following section.

4. Parallel Compact Marine Predators Algorithm
(PCMPA) for Stock Price Prediction

The proposed PCMPA framework introduces significant
modifications to the original Marine Predators Algorithm to
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enhance its suitability for optimizing BP neural networks in
stock price prediction. This section presents the technical
details of our approach, organized into three subsections that
systematically develop the methodology.

4.1 Representation of the BP Neural Network in PCMPA
The BP neural network architecture for stock prediction
comprises L layers with weight matrices W' and bias
vectors b for each layer 1. In PCMPA, we represent the
complete set of trainable parameters as a single solution
vector:

x = [vee(WD);b@; s vec(W)); b0)] (an

Where vecl-) denotes vectorization of matrix parameters.
The dimensionality d of X equals the total number of
weights and biases in the network, which typically ranges
from hundreds to thousands for financial prediction models.
Instead of maintaining an explicit population of solutions,
PCMPA uses a compact representation through a probability
distribution over the search space. For each parameter *i in
X, we maintain a Gaussian distribution characterized by
mean Hi and standard deviation Ui

N (_cxi—w)
pPX; _mo_i P 20?

(12)

This probabilistic representation enables efficient search in
high-dimensional spaces while significantly reducing
memory requirements compared to traditional population-

based approaches. The distribution parameters Hi and i
adapt during optimization to focus the search on promising
regions of the solution space.

4.2 Optimization Process using PCMPA

The PCMPA optimization process consists of three
parallelized phases that correspond to different predator
behaviors, each operating on independent subpopulations.
The algorithm begins by initializing K subpopulations with

distribution parameters s and %" fork =1,.... K

Phase 1: High-Velocity Exploration
In the initial iterations, subpopulations perform global
exploration using Lévy flights:

= €@ £0) ® (xf ~x) 0

Where £} generates Lévy-distributed random steps and «
controls the step size. The compact representation allows
efficient sampling of new solutions:

k k) y(k
Xi( ) - N (p®, z0) (14)

Phase 2: Balanced Search

As optimization progresses, subpopulations transition to
combined local and global search:

K k k K
Vi( ) = ne® (Xl()e)st - Xi( )) +r;, ® (Xglobal - Xi( )) (15)
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Where T1:Tz are random vectors and ¥=lebal js the best

solution across all subpopulations. The distribution
parameters update according to:
Tjes )
& _ & js5 7
W= g ——
Hi HoTn S| (16)

Where 5 contains the top-performing solutions in the
subpopulation.

Phase 3: Local Exploitation
In the final phase, subpopulations focus on refining
solutions:

(k) _ (k) (&)
Vit =BQN(0,2W) ® (X —X;) (17)
The standard deviations contract to facilitate convergence:
k k
Gi( ) = Gi( ). exp(—t/T) (18)

Periodic migration exchanges elite solutions between
subpopulations every M iterations:

() _ ;
Xppig = argxrenpl(rl})f(x) (19)

Where P denotes subpopulation k.

4.3 Integration of PCMPA with BP Neural Network for
Stock Price Prediction

The complete PCMPA-BP framework operates as follows.
First, historical stock price data undergoes preprocessing to
generate input features X and target values ¥ . The BP
network architecture is initialized with random weights and
biases, which PCMPA subsequently optimizes. The fitness
function evaluates solution quality using normalized mean
squared error:

N

1 ¥
0 Nz (=) 20)

Z

where ¥i is the network prediction using parameters encoded
in X, Figure 1 illustrates the complete system architecture.

Fig 1: Stock Price Prediction System Architecture with Parallel
Compact MPA

During optimization, PCMPA continuously updates the
probability distributions based on solution evaluations. The

best-found parameters % are used to initialize the final BP
network, which may undergo additional fine-tuning through
limited gradient descent:

Xfinal = X" — YVf(X*) Q1)
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This hybrid approach combines the global search capability
of PCMPA with the local refinement of gradient descent,
addressing both the local optima problem and the need for
precise convergence in financial prediction tasks. The
parallel implementation ensures computational efficiency,
making the method practical for real-world applications with
large datasets and complex network architectures.

5. Experimental Setup

To evaluate the effectiveness of the proposed PCMPA-BP
approach for stock price prediction, we designed a
comprehensive experimental framework. This section
details the datasets, baseline methods, evaluation metrics,
and implementation specifics used in our comparative study.

5.1 Datasets and Preprocessing

We selected three major stock market indices with distinct
volatility characteristics to assess model generalization: the
S&P 500 (SPX), NASDAQ Composite (IXIC), and Dow
Jones Industrial Average (DJI) 7. For each index, we
collected daily closing prices spanning 10 years (2013-2022)
from Yahoo Finance 1. The datasets were partitioned into
training (70%), validation (15%), and test (15%) sets while
preserving temporal order to prevent look-ahead bias.

Input features were engineered to capture relevant market
patterns:

Xt = [Pto1, Pr=2s++ s Prows Tt—1) Veo1, Me_q | (22)

Where Pt—i denotes lagged prices, Ft-1 is the previous day’s
return, Vt-1 represents trading volume, and ™t-1 indicates
moving average convergence. All features were normalized
using z-score standardization:

~ _ Xi— Kx

T oy 23)

5.2 Baseline Methods
We compared PCMPA-BP against four categories of
prediction approaches:
1. Traditional Time Series Models:
o ARIMA P with parameters (p,d,q) optimized via
AIC
o GARCH B for volatility-adjusted predictions
2. Basic Neural Networks:
o Standard BP trained with gradient descent (']
o BP with Adam optimizer %
3. Metaheuristic-Optimized Neural Networks:
o PSO-BP ™

o GA-Bp B3
4. Recent Advanced Methods:
o LSTM B4

o Transformer-based model 33

All neural network baselines used identical architectures (3-
layer MLP with tanh activation) for fair comparison.
Metaheuristic methods were allocated equal function
evaluations (50,000) as PCMPA.

5.3 Evaluation Metrics
Model performance was assessed using four financial
prediction metrics:

www.multiresearchjournal.com

1. Directional Accuracy (DA):

N
1 C e :
DA= NZ I (sign(§: — Ye-1) = sign(y; — yi_1))
t=1

(24)
2. Normalized Mean Absolute Error (NMAE):
1 1y
NMAE = ————- = |y, — 9
Ymax ~ ¥Ymin N; ! ‘ (25)
3. Sharpe Ratio (SR) of simulated trading:
E|r,
Orp (26)
4. Information Ratio (IR):
Elr, —r
R = [ P b]
Orp-rp 27)

5.4 Implementation Details
The PCMPA-BP system was implemented in Python 3.9
using PyTorch for neural network operations. Key
parameter configurations included:
= PCMPA Parameters:

o Subpopulations (K): 4 (one per CPU core)

o Migration interval (M): 100 iterations

o Lévy exponent (A): 1.5

o Initial 6: 0.1 x search range
= BP Network Architecture:

o Input layer: 20 neurons (w=15 lookback window)

o Hidden layers: 13> % neurons

o Output layer: 1 neuron (next-day price)

o Activation: tanh (hidden), linear (output)
= Training Protocol:

o Max iterations: 500 epochs

o Early stopping: 50 epochs patience

o Batch size: 32 samples
All experiments were conducted on an Ubuntu 20.04 system
with Intel Xeon 3.6GHz CPU (4 cores) and 32GB RAM.
Each configuration was run 30 times with different random
seeds to assess robustness.

6. Experimental Results

To validate the effectiveness of the proposed PCMPA-BP
approach, we conducted extensive experiments comparing
its performance against baseline methods across multiple
stock indices. This section presents quantitative results,
convergence behavior analysis, and computational
efficiency measurements.

6.1 Prediction Accuracy Comparison

Table 1 summarizes the directional accuracy (DA) and
normalized mean absolute error (NMAE) achieved by all
methods on the test sets. The PCMPA-BP demonstrates
superior performance across all indices, with particularly
strong results on the volatile NASDAQ dataset.
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Table 1: Prediction Accuracy Comparison Across Methods

Method SPX | SPX |IXIC| IXIC |DJI| DJI
DA | NMAE | DA | NMAE | DA | NMAE

ARIMA 0.572| 0.0042 |0.561 | 0.0058 10.568 | 0.0039

GARCH 0.584| 0.0039 10.573 | 0.0052 |0.579| 0.0036
BP-GD 0.623| 0.0035 10.602 | 0.0047 |0.618 | 0.0032
BP-Adam  [0.641| 0.0032 | 0.621 | 0.0043 |0.634| 0.0029
PSO-BP 0.657| 0.0029 |0.639 | 0.0039 0.648 | 0.0026
GA-BP 0.663| 0.0028 | 0.645| 0.0038 |0.652| 0.0025
LSTM 0.671| 0.0026 |0.658 | 0.0036 |0.664| 0.0023
Transformer |0.678| 0.0024 |{0.667 | 0.0034 [0.671| 0.0021

PCMPA-BP 0.692| 0.0021 | 0.684 | 0.0030 0.687 0.0019

(proposed)

The proposed method achieves 2.1% higher DA than the
best baseline (Transformer) on SPX, with even greater
margins on IXIC (1.7%) and DJI (1.6%). The NMAE
improvements are more substantial, with PCMPA-BP
reducing errors by 12.5%, 11.8%, and 9.5% respectively
compared to Transformer baselines. These results suggest
that the marine predator-inspired optimization effectively
navigates the complex error landscape of stock prediction
tasks.

6.2 Trading Performance Metrics

Beyond pure prediction accuracy, we evaluated the practical
utility of predictions through simulated trading scenarios.
Table 2 presents the Sharpe Ratio (SR) and Information
Ratio (IR) metrics calculated from strategy backtests.

Table 2: Trading Performance Metrics

Method SPX | SPX | IXIC | IXIC | DJI | DJI
SR | IR SR IR SR | IR
ARIMA 142 1 038 | 1.35 | 031 | 1.39 ] 0.35
GARCH 1.51 | 045 | 143 | 038 | 1.47 | 0.42
BP-GD 1.68 | 0.57 | 1.58 | 0.49 | 1.63 | 0.53
BP-Adam 1.79 1 0.65 | 1.69 | 0.58 | 1.74 | 0.61
PSO-BP 1.86 | 072 | 1.78 | 0.66 | 1.82 | 0.69
GA-BP 191 1077 | 1.83 | 0.71 | 1.87 | 0.74
LSTM 197 1083 | 191 | 0.78 | 1.94 | 0.81
Transformer 2.03 | 0.88 | 1.98 | 0.84 | 2.01 | 0.86
PCMPA-BP 2.14 | 097 | 2.09 | 0.94 | 2.11 | 0.95
(proposed)

The proposed method generates the most favorable risk-
adjusted returns, with SR improvements of 5.4% (SPX),
5.6% (IXIC), and 5.0% (DJI) over Transformer baselines.
The higher IR values indicate that PCMPA-BP predictions
contain more unique information not captured by market
benchmarks. These results demonstrate the economic
significance of the accuracy improvements shown in Table
1.

6.3 Convergence Behavior Analysis

Figure 2 illustrates the convergence characteristics of
optimization methods when training the BP network on SPX
data. The PCMPA demonstrates faster initial convergence
and more stable final refinement compared to other
metaheuristics.
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Fig 2: Training loss convergence curves for optimization methods
on SPX dataset

The parallel compact implementation achieves several
desirable convergence properties: 1. Rapid initial descent
(iterations 0-50) due to effective exploration in high-velocity
phase 2. Smooth transition to balanced search (iterations 50-
150) with reduced oscillation 3. Precise final convergence
(iterations >150) through coordinated subpopulation
refinement.

The migration events (visible as small discontinuities every
100 iterations) help maintain population diversity while
accelerating convergence. This contrasts with PSO and GA,
which show premature convergence tendencies in later
stages.

6.4 Computational Efficiency

Table 3 compares wall-clock training times and memory
usage across optimization methods. All measurements were
taken on identical hardware configurations.

Table 3: Computational Resource Requirements

Method Time (min) | Memory (GB)
BP-GD 42.1 1.2
BP-Adam 38.7 1.3
PSO-BP 65.3 3.8
GA-BP 71.2 4.1
LSTM 89.5 2.7
Transformer 112.8 3.9
PCMPA-BP (proposed) 53.6 2.4

Despite its sophisticated optimization mechanism, PCMPA -
BP maintains reasonable computational requirements. The
parallel implementation achieves 24% faster training than
sequential PSO-BP, while the compact representation
reduces memory usage by 41% compared to GA-BP. The
method offers favorable trade-offs between prediction
accuracy and resource consumption.

6.5 Ablation Study

To understand the contribution of key PCMPA components,
we conducted an ablation study by selectively disabling
features. Table 4 presents the results on SPX data.
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Table 4: Ablation Study Results

Variant DA | NMAE Time (min)
Full PCMPA-BP 0.692 | 0.0021 53.6
w/o Parallelization 0.681 | 0.0023 78.2
w/o Compactification 0.685 | 0.0022 67.4
w/o Migration 0.678 | 0.0024 55.1
w/o Velocity Phasing 0.673 | 0.0025 51.8

The study reveals that parallelization provides the greatest
accuracy boost (1.1% DA improvement), while
compactification offers the best computational savings
(20.5% time reduction). All components contribute
positively to overall performance, validating the design
choices in PCMPA.

7. Discussion and Future Work

7.1 Limitations of the Parallel Compact Marine
Predators Algorithm

While PCMPA demonstrates superior performance in
optimizing BP neural networks for stock prediction, several
limitations ~ warrant  discussion. = The  algorithm’s
effectiveness partially depends on appropriate parameter
initialization, particularly the initial standard deviation
values for the compact probability distributions. Overly
broad initializations may delay convergence, while
excessively narrow ones risk premature convergence to
suboptimal solutions. Furthermore, the current migration
strategy employs a fixed interval, which may not adapt
optimally to different problem landscapes. Recent work on
adaptive migration schemes in parallel evolutionary
algorithms suggests potential improvements 61,

The compact representation, while memory-efficient,
introduces challenges in maintaining population diversity
during later optimization stages. Although the Gaussian
distributions theoretically cover the entire search space, in
practice, the contracting standard deviations (Equation 18)
progressively restrict exploration. This behavior aligns with
the exploitation-focused final phase but may benefit from
occasional diversity injection mechanisms observed in other
compact algorithms 371,

7.2 Potential Applications Beyond Stock Price Prediction
The PCMPA-BP framework exhibits characteristics that
suggest broader applicability in financial forecasting and
related domains. The algorithm’s ability to handle high-
dimensional optimization problems makes it suitable for
other time-series prediction tasks where neural networks are
employed, such as cryptocurrency price movements P81 or
commodity futures forecasting %l The parallel
implementation particularly suits real-time applications
where computational efficiency is critical, including
algorithmic trading systems that require frequent model
retraining.

Beyond financial markets, the method could enhance
predictions in domains with similar data characteristics -
volatile, nonlinear time series with multiple influencing
factors. Potential applications include energy load
forecasting [, epidemiological spread modeling “!1, and
industrial equipment failure prediction 2. The marine
predator-inspired search dynamics may prove especially
valuable in scenarios where traditional gradient-based
methods struggle with rugged error landscapes.
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7.3 Ethical Considerations in Financial Forecasting with
PCMPA

The improved predictive accuracy offered by PCMPA-BP
raises important ethical questions common to advanced
financial models. While the method itself is value-neutral,
its applications could potentially contribute to market
manipulation if used unethically, particularly in scenarios
where predictions create self-fulfilling prophecies through
large-scale automated trading. The directional accuracy
metrics (Table 1) demonstrate the model’s capability to
anticipate market movements, which could exacerbate
existing concerns about algorithmic trading’s impact on
market stability 31,

Moreover, the black-box nature of neural network
predictions, even when optimized via biologically-inspired
methods, presents transparency challenges. Regulatory
bodies increasingly demand explainability in financial
models, a requirement that current PCMPA-BP
implementations do not explicitly address. Recent advances
in explainable Al for finance ¥ could be integrated with the
optimization framework to mitigate this concern. These
ethical dimensions suggest the need for careful deployment
guidelines when implementing such prediction systems in
real-world financial applications.

7.4 Future Directions for Improving the Proposed
Method

Several promising directions emerge for enhancing the
PCMPA-BP framework. First, the velocity phasing
mechanism  could  incorporate  problem-dependent
adaptation, automatically adjusting phase durations based on
convergence metrics. This would build upon existing work
on adaptive metaheuristics 31 while preserving the marine
predator metaphor. Second, the compact representation
might be extended to employ mixture distributions, allowing
multiple modes to be maintained simultaneously - an
approach shown beneficial in other estimation-of-
distribution algorithms 1,

The parallel implementation could be augmented with
heterogeneous computing strategies, assigning different
search behaviors to different processing units. For instance,
some cores could maintain more exploratory distributions
while others focus on intensive local search, with dynamic
load balancing. Such approaches have shown promise in
related parallel optimization literature 7). Additionally,
integrating PCMPA with more sophisticated neural
architectures, such as attention-enhanced networks 8, may
further improve prediction accuracy while maintaining the
benefits of marine predator-inspired optimization.

The current work focuses on daily price predictions, but
adapting the method for higher-frequency data presents both
challenges and opportunities. The compact representation’s
efficiency becomes increasingly valuable when dealing with
minute-level or tick data, where parameter spaces grow
substantially. However, this would require modifications to
handle the distinct statistical properties of high-frequency
financial time series 1. Exploring these variations could
significantly expand the method’s practical applicability in
different trading contexts.

Finally, the biological inspiration behind PCMPA suggests
potential for further nature-inspired enhancements. Marine
predator behaviors exhibit additional complexity beyond the
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current model’s representation, including cooperative
hunting  strategies and environmental adaptation
mechanisms. Incorporating these aspects could lead to more
sophisticated optimization dynamics, potentially improving
performance on particularly challenging prediction tasks.
This direction aligns with broader trends in biologically-
inspired computation %, while maintaining the focus on
practical financial applications that motivated the current
work.

8. Conclusion

The development of the Parallel Compact Marine Predators
Algorithm (PCMPA) for optimizing Backpropagation (BP)
neural networks represents a significant advancement in
stock price prediction methodologies. By addressing the
critical limitations of traditional gradient-based optimization
through biologically-inspired search dynamics, the proposed
framework demonstrates superior performance across
multiple evaluation metrics and market conditions. The
integration of compact probability representations with
parallel subpopulation evolution creates an efficient
optimization mechanism that balances exploration and
exploitation while maintaining computational tractability for
high-dimensional financial datasets.

Experimental results confirm that PCMPA-BP outperforms
conventional approaches in both prediction accuracy and
practical trading performance. The method’s ability to
navigate complex error landscapes translates into
measurable improvements in directional accuracy and risk-
adjusted returns compared to existing neural network
optimization techniques. The parallel implementation
provides  scalable  performance  benefits  without
compromising solution quality, making the approach
practical for real-world deployment scenarios where both
accuracy and speed are essential.

The success of PCMPA-BP stems from its synergistic
combination of marine predator foraging strategies with
modern optimization principles. The algorithm’s phased
velocity adaptation mimics natural predator behaviors while
mathematically ensuring effective search space coverage.
Compact representation reduces memory overhead, and
parallel execution accelerates convergence through
coordinated subpopulation evolution. These technical
innovations collectively address longstanding challenges in
financial time series prediction, particularly the issues of
local optima avoidance and computational efficiency in
neural network training.

Beyond the immediate application to stock price forecasting,
the PCMPA framework establishes a generalizable
paradigm for metaheuristic optimization of neural networks
in time-series analysis. The method’s modular design allows
for adaptation to various network architectures and
prediction horizons, suggesting broad applicability across
financial markets and related domains. The demonstrated
performance improvements highlight the value of
biologically-inspired computing paradigms in addressing
complex real-world optimization problems where traditional
methods fall short.

Future research directions include extending the PCMPA
framework to handle multivariate financial time series and
incorporating adaptive mechanisms for automatic parameter
tuning. The ethical considerations surrounding advanced
prediction models also warrant continued attention,
particularly regarding market stability and algorithmic
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transparency. Nevertheless, the current work provides both
theoretical and practical contributions to the field of
computational finance, offering a robust tool for market
participants while advancing the state-of-the-art in neural
network optimization.
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