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Abstract

Marshall and Palmer (1948) [1], in a highly cited article, 

present their exponential general relation of; 

  

Λ = 41 R- 0.21 cm-1 where R is the rate of rainfall 

 

ND = N0 e- ΛD where D is diameter of raindrops.  

 

When D = 0, ND = N0 and in this MP model, they find that 

N0 = 0.08 cm-1. However, Jennings, for this paper, worked 

up the exact raindrop data in MP Fig. 2 and got. 

 

 Λ = 41.1 R- 0.212 cm-1 (Jennings) 

 

This is undersetandably very close to the MP result, but in 

an extended discussion in Pruppacher and Klett (1997) [2] 

pp. 30-38, it is remarked that N0 can depend on R in the 

following way where (Sekhorn and Srivastava (1971)) [3] 

find. 

 

 N0 = 7 x 103 R0.37 m- 3mm- 1 and Λ = 3.8 R- 0.14 mm-1 

 

Jennings got N0 = 0.0847 cm- 4 for Fig. 2 and keeps the 

accuracy because the data in MP Fig. 2 is linear above D = 

1.5 mm raindrop size. Marshall and Palmer also note that 

the mass of rainwater can be calculated and correlated with 

the rate of rainfall R by the MP equation at the top here. At 

small raindrop size, there is devation from linearity of ln ND 

versus D, which has a negative slope. In the MP paper, in 

Fig. 1, we note that the N0 is not constant and applying 

Jennings formula above does not work. 
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Introduction 

In modeling raindrops Marshall and Palmer came up with the ln ND versus D fit that worked well for Figure 2 in their 1948 

paper. However, in Pruppacher and Klett they say that a number of investigators have pointed out that N0 is a function of R. 

Figure 1 in the Marshall and Palmer paper shows that this is so. For this paper, I used tracing paper and a Cartesian grid to get 

dln ND/dD and N0 for both figures. Figure 2 fits the exponential relation exactly but the author noticed that for Figure 1 there is 

no common N0. In RESULTS the author will calculate N0 according to Sekhorn and Srivastava’s formula in ABSTRACT. N0 

for Figure 2 is more accureately 0.0847 cm- 4 and here the exponent and prefactor are in higher precision as the data fits the 

exponential relation well.  

 

Results 

The author got the slopes of the curves for Figure 1 and Figure 2 in Marshall and Palmer. Table 1 has the values of R, dln 

ND/dD = - Λ, Λ, and 41.1 R- 0.212 cm-1. According to Jennings calculation in this paper on Figure 2, Λ = 41.1 R- 0.212 cm- 1. 
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Table 1 
 

rate of rainfall Marshall and Palmer Figure 2 Jennings version of theory 

R mm/hr dlnND/dD = - Λ cm-1 (data) Λ cm-1 (data) 41.1 R – 0.212 = Λ cm-1 

1 - 41.054 41.05 41.1 

5 - 28.962 29.0 29.2 

25 - 20.979 20.98 20.8 

 

Looking at Table 1 we can see that the exponential fit does 

well for its data. Pruppacher and Klett note, “more detailed 

studies...have demonstrated that the MP distribution is not 

sufficiently general to describe most observed spectra 

accurately.” (page 34) In DISCUSSION the author will look 

at the N0 for MP Figure 1. Copies of both of the MP figures 

are included here. 

 

Discussion 

We have to calculate the N0 for R = 1, 2.8, 6.3, and 23.0 

mm/hr rainfall rates in Figure 1 by reading the values off the 

graph. TABLE 2 has these numbers. 

Table 2: Figure 1 – N0 = ND intercept from the graph, Λ from 

reading the graph 

 
R 

mm/hr 

N0 (m- 

3mm- 1) 

Λ (cm-1) 

data 

41.1 R-0.212 = Λ 

theory 

N0 = 7 x 103 R0.37 

theory 

1 17300 47.56 41.1 7000 

2.8 19600 38.64 33.04 10250 

6.3 7180 25.76 27.82 13830 

23.0 7180 20.27 21.14 22330 

 

This is from the actual numbers on the tracing paper and 

Marshall and Palmer have. 
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 ND = N0 e- ΛD (1) 

 

Taking the derivative with respect to D we have. 

 

 dND/dD = N0 e- ΛD (- Λ) (2) 

 

Then; 

 

 dND/dD = ND (- Λ) (3) 

 

and forming the logarithm there obtains. 

 

 dlnND/dD = - Λ (4) 

 

Now, in Figure 2 it is an exact fit for equation (4), but in 

Figure 1, N0 varies. We saw how well Sekhorn and 

Srivastava’s relation models Figure 1. Then we calculated 

the intercept on the ND 

axis for the different R’s according to Sekhorn and 

Srivastava and there is disagreement for Figure 1. 

 

Conclusion 

It is understandable that a simple exponential fit for the 

raindrops would give Marshall and Palmer’s paper much 

notice. This subject is very important as rainfall needs to be 

understood.  
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 ∇ x B = μo J 

 

Maxwell added to Ampère’s equation, and two of the others 

were from Carl Friedrich Gauss, with one from Michael 

Faraday. In addition, Ampère was a devout Catholic who 

prayed the Rosary. His name is one of the 72 names 

inscribed on the Eiffel Tower. 
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