Int. j. adv. multidisc. res. stud. 2025; 5(4):1714-1722

Received: 08-07-2025

International Journal of Advanced Multidisciplinary
Accepted: 18-08-2025

Research and Studies

Using Redis for Caching Optimization in High-Traffic Web Applications

ISSN: 2583-049X

! Liubomyr Kaptosv
' Bachelor’s Degree in Computer Science, Odesa National University of Technology, Odesa, Ukraine
!'Senior Software Engineer at SmartBarrel, United States

Corresponding Author: Liubomyr Kaptosv

Abstract

The relevance of this study lies in the growing demand for
high-load web applications, especially in e-commerce,
social media, and streaming platforms, where performance,
stability, and scalability are crucial. As user loads increase,
traditional relational database encounter performance
bottlenecks, highlighting the need for efficient caching
solutions. Redis, a high-performance in-memory key-value
store, is frequently used in such scenarios; however, the
impact of different caching strategies on its performance
remains understudied.

The purpose of this article is to comprehensively evaluate
the effectiveness of Redis as a caching tool for optimizing
web application performance. The experimental design
involved testing a web application backed by PostgreSQL
under four conditions: no cache, Redis with cache-aside,

1,000, 5,000, and 10,000 were simulated using Locust, and
performance metrics were collected through Prometheus.
Statistical analysis was performed using a t-test, and results
were visualized with graphs and tables.

The results show that Redis significantly decreases average
response time (e.g., from 1146 ms to 323 ms in cache-aside
mode), increases throughput (up to 226 requests/sec), and
reduces the load on the main database. Cache-aside proved
most effective for read-intensive workloads, while Redis
Cluster offered better stability under high concurrency.

The findings confirm Redis as a valuable component for
high-load applications. Future research should explore Redis
in distributed database settings, compare it to emerging tools
like KeyDB, and examine its energy efficiency in cloud
environments.

Redis with write-through, and Redis Cluster. User loads of

Keywords: Operational Analytics, Latency Minimization, Data Consistency, Cache Invalidation, Load Balancing

Introduction

In the modern era of digital transformation, highly loaded web applications such as e-commerce platforms (Amazon, Alibaba),
social networks (Facebook, Twitter), and streaming services (Netflix, YouTube) are becoming more widespread. Growing user
expectations regarding the speed of access to content and the constant availability of services place strict requirements on the
architecture of web applications. The main challenges when serving a large number of simultaneous users are delays in
processing HTTP requests, database overload, and scalability limitations of traditional server solutions. In this context, caching
is of particular importance - an effective method of reducing the load on the database by storing the results of frequent queries
in a fast-accessible storage. Caching can significantly reduce server response time, improve application performance, and
ensure system resilience to peakloads. Among the existing tools for implementing caching, Redis plays a key role - a high-
performance in-memory open source database that supports not only simple key values but also complex data structures: lists,
sets, hash tables, etc. Due to minimal data access latency and the ability to process millions of operations per second, Redis has
become an integral component in such highly loaded systems as Twitter, GitHub, and Stack Overflow. However, even
thoughRedis is widely integrated into modern architectures, systems that process a large number of transactions often face
problems with scalability, effective TTL (time-to-live) management, cacheoutages, and synchronization with the main
database. There is a lack of analysis in the scientific and applied literature on the impact of different Redis configurations -
both in terms of cache size and preemptive and clustering policies - on system performance in real-world environments.

An analysis of current research on the use of Redis to optimize caching in high-load web applications allows us to distinguish
four interrelated research areas. First of all, the study of architectural solutions to improve caching efficiency using Redis is of
particular interest. In the work of Xu et al. (2021)) proposed a hottable-based caching model that provides selective cache

1714

International Journal of Advanced Multidisciplinary Research and Studies

support for the most requestedobjects, minimizing the load
on the database during high-frequency access. Malancioiu et
al. (2022) " analyzed the mechanisms for reducing latency
during cold start in serverless environments, pointing to
Redis as a tool for pre-saving configurations and metadata,
which provides accelerated initialization of functions.
Kumar (2023) P! used Redis in the SAP SuccessFactors
environment to form a subjective sense of performance,
emphasizing the role of asynchronouscaching and UX
optimization at the interface level. Summarizing the results
of this area, it is worth noting that research on the dynamic
adaptation of TTL parameters in Rediscaches, as well as
models for predicting the demand for real-time cache
requests, remain relevant.

The second area is devoted to the comparative analysis of
Redis with other caching systems and the study of its
internal optimizations. In the work of Faridi et al. (2021) 4
used machine learning algorithms to analyze the
effectiveness of Redis and Memcached, which allowed them
to establish the advantages of Redis in terms of latency and
adaptability to load changes. Catovi¢ et al. (2022) [
compared the performance of cache systems in .NET 6,
revealing the higher efficiency of Redis when working with
large objects due to the support of more complex data types.
Zhang et al. (2023) 7 presented NCRedis, a modified
version of Redisoptimized for non-volatile memory (NVM),
which reduces energy consumption and speeds up cache
access without losingconsistency. In this context, further
research is needed to model Rediscache algorithms for non-
standard memory architectures, in particular for edge
computing and embedded systems with limited resources.
The third research vector concerns the integration of Redis
into specific application environments and the analysis of
the impact of caching on the quality of user experience. The
work of Joshi (2024) B analyzes the optimization of Redis
for payment gateways in cloud infrastructures, with a focus
on improving transaction reliability and reducing collisions
during parallel writing. Shethiya (2023) ') studied Redis as
a means of scaling in multi-tiered web applications,
emphasizing the importance of cache to stabilize responses
during sudden increases in traffic. Sivakumar (2023) 12!
demonstrated the effectiveness of Redis when working with
large language models in a browser, where caching the
results of inference avoids duplication of computations.
Ashokan and Golli (2022) I studied Redis as part of a real-
time backend for machine learning applications, especially
in terms of low latency event processing. Taken together,
these results point to the need for further research on the
formation of templates for integrating Redis into domain
architectures with high SLA requirements, as well as
studying the cache's behavior under hybrid workloads.

The fourth area covers the use of Redis as a component of
scalable and distributed infrastructures. In the study by Zhou
et al. (2023)), Redis is applied to the high-performance
graph system RedTAO with a trillionedges, where Redis
provides intermediatecaching of nodes and edges to reduce
the load on the main storage. Ren and Li (2022) ['% analyzed
Redis in the context of big data architecture, focusing on the
role of Redis as a buffer between the collection, aggregation,
and analytics modules. Zhu et al. (2023) B% proposed
RAPO, an automated tool for load balancing in
Redisclusters in metadata-intensive environments. Sanka et
al. (2023) U7 developed an FPGA-Redis hybrid caching
system for blockchain networks, where Redis acts as a

www.multiresearchjournal.com

controller of high-speed access to the transaction pool. In
view of this, further research on Redis as a cache component
in composite systems with a heterogeneous computing
architecture is promising, in particular with a focus on
automatic scaling and maintaining consistency in a cluster
environment.
Thus, the current discourse on using Redis to optimize
caching in high-load web applications covers four areas:
architectural cache optimization, comparative performance
of Redis in the context of alternative solutions, integration
into domain web systems, and application in scalable
distributed environments. Each of these areas provides a
promising basis for further study of Redis as a key
component of infrastructure performance in systems with
high requirements for data availability and processing speed.
Despite a considerableamount of research on caching in web
applications, several critical aspects remain unresolved,
which complicate the effective implementation of Redis in
high-load environments. In particular, there is a lack of
research on how specific caching strategies (e.g., cache-
aside or write-through) affect response time and system
throughput in the face of large-scale traffic. In addition, the
lack of empirical studies comparing Redis performance in
different configurations, such as RedisCluster vs. single
node, limits the ability to develop universal
recommendations for system architects.
The proposed research fills these gaps by experimentally
comparing caching strategies and Redis scaling models
based on real-world load data. By using a standardized test
environment, modern monitoring and statistical analysis
tools, we were able not only to quantify the effectiveness of
individual approaches, but also to formulate practical
recommendations for choosing configurations depending on
the nature of the requests and the architecture of the web
application. Thus, the results of the study expand the
empirical base and contribute to a deeper understanding of
the role of Redis in ensuring the scalability and stability of
high-load systems.

The purpose of the article is to evaluate the effectiveness of

using Redis as a caching tool to optimize the performance of

high-load web applications. Particular emphasis is placed on
analyzing the impact of different caching strategies and

Redis configurations on system performance, stability, and

scalability.

To achieve this goal, the article solves the following tasks:

1. Analyze the impact of using Redis on the response time
and throughput of a web application under high load
conditions;

2. To compare the effectiveness of the main caching
strategies - in particular, cache-aside and write-through
- when using Redis in a real environment;

3. Evaluate the impact of Redis scaling (e.g.,
implementing RedisCluster) on performance compared
to using a single Redis instance.

4. To formulate recommendations for choosing the
optimalRedisconfiguration depending on the nature of
the workload and architectural features of the web
application.

Methodology

As part of the study, we implemented a full cycle of
experimental analysis of Redis performance as a caching
tool in high-load web applications. For this purpose, we
created a test environment that models the typical

1715

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies

architecture of a modern web service. The server
infrastructure was based on a t3.medium AWS EC2 virtual
instance with two virtual processors (VCPUs) and 4 GB of
RAM, which provides representative computing power for
medium-loaded services. The web application was
developed on the Node.js platform using the Express
framework, and the PostgreSQL database was used as the
main data storage. Redis version 7.0 was integrated as a
cache service, with the ability to test in single instance and
cluster deployment modes of RedisCluster. The load was
modeled with the Locust tool, which allows simulating the
simultaneous activity of a large number of users, and
Prometheus was used to monitor system resources and
performance metrics.

The experiment procedure involved the sequential
configuration of a web application with a connection to
PostgreSQL and the implementation of cachingfunctionality
using Redis. Two main caching strategies were modeled:
cache-aside, where data is loaded into the cache on demand,
and write-through, which involves simultaneous writing to
the cache and database. For all scenarios, the TTL (time-to-
live) of cachedobjects was set to 60 seconds, which allowed
us to track the dynamics of updating and purging records.
To ensure comparability of the data, the experiments were
conducted in four separate scenarios: without caching, with
Redis in cache-aside mode, with Redis in write-through
mode, and with Redis Cluster in cache-aside mode. For each
scenario, threerepeated tests were conducted under the load
of 1000, 5000, and 10000 simulated users, respectively,
which allowed us to take into account the impact of
scalability on caching efficiency.

The experimental data was collected automatically through
Prometheus, which ensured the recording of key indicators
in real time: average response time, median, 95th percentile,
throughput (requests per second), as well as the level of
CPU and RAM usage on the database side. Statistical
methods were used to further analyze the results, including a
t-test to identify statistically significant differences between
the scenarios. The obtained data was visualized in the form
of graphs and tables, which made it possible not only to
quantify but also to qualitatively assess the impact of
different caching approaches on system performance under
increasing load. This approach provided an objective and
reproducible assessment of Redis's performance in the
context of optimizing the performance of high-load web
applications.

Results

One of the most important characteristics of highly loaded
web applications is response time - the delay between the
user sending a request to the server and receiving a
response. This indicator has a direct impact on user
experience, especially in critical areas such as e-commerce,
banking, streaming services, or registration systems.
According to industry research, an increase in latency of just
100 ms can lead to a significant decrease in conversion or
loss of user engagement. Therefore, in this study, response
time was chosen as the main metric for comparing the
effectiveness of different caching strategies using Redis.

The purpose of this stage is to analyze how changing the
cache architecture (no caching, using Redis with cache-
aside, write-through, Redis Cluster) affects the average
response time of a web application under increasing load. In
each scenario, testing was performed at three levels of

www.multiresearchjournal.com

simulated load - 1000, 5000, and 10000 simultaneous users.
This approach made it possible to simulate both moderate
and extremeloadstypical of peakperiods in real systems.

For the sake of comparison accuracy, only response times
during stable system operation, after the cache has warmed
up, i.e. based on the "hot" cache, were taken into account to
minimize fluctuations caused by the first requests
(coldcache). Response times were measured directly at the
level of client HTTP requests, taking into account the full
processing cycle (including network connection time,
application logic processing, cache or database access, and
response generation). The measurements for each scenario
were repeatedthree times to reduce the impact of random
disturbances (e.g., a short-term load peak or GC). The
results are shown in Table 1.

Table 1: Average response time (ms) of a web application under
different caching scenarios with increasing load

Scenario 1000 users |S000 users|10000 users
Without caching 312 845 1647
Redis (cache-aside) 108 246 533
Redis (write-through) 127 289 618
RedisCluster (cache-aside) 96 207 447

Source: own development of the author

The results clearly demonstrate that Redis integration
significantly improves web application performance by
reducing access time to frequently used data. In the baseline
scenario without caching, the average response time
increases almost exponentially - from 312 ms with 1000
users to more than 1.6 seconds with a load of 10,000 users.
This confirms the high load on the main PostgreSQL
database, which does not have time to process requests in
conditions of competitive access to disk resources.

The scenario with Redis Cluster in cache-aside mode was
the most advantageous. Due to the distribution of data
among several clusternodes, the system maintains a low
response time even under a load of 10,000 users - 447 ms,
which is more than three times faster than without caching.
This demonstrates the effective horizontal scalability of
RedisCluster and its suitability for critical loaded systems
that require high resilience to traffic peaks.

The scenario with Redis in write-through mode also showed
improvement, but the average response time was slightly
higher compared to cache-aside. This is because write-
through involves synchronous writes to both Redis and
PostgreSQL, which adds additional latency with each write.
However, this strategy has advantages in ensuring data
consistency, and it is advisable to use it in systems where it
is critical to preserve every record (for example, financial
transactions).

In practice, these results confirm that using Redis in a cache-
aside configuration provides the best balance between
performance and ease of implementation. And with
increasing requirements for scalability and fault tolerance,
the transition to Redis Cluster allows you to achieve a
significant performance gain without radically changing the
caching logic. Thus, the optimal strategy depends on the
type of load, the frequency of data changes, and the
criticality of latency - and the results of this study can serve
as a basis for making architectural decisions in real web
projects.

In order to visually compare the effectiveness of different
caching strategies in a web application under increasing

1716

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies

load, a graph of the average response time versus the
number of simultaneous users was built. The graph was built
using empirical data obtained from load testing for four
scenarios: without caching, with Redis in cache-aside and
write-through modes, and using RedisCluster. The graphical
interpretation of the results allows you to visualize the
increase in latency in each case and justify the choice of the
optimal system configuration for a high-load environment

(Fig 1).

Dependence of response time on the number of users
1800
1600
1400
1200 |

7

g

o

£

E 1000 s W ithout caching

H

z‘ 800 smmmRedis (cache-aside)
4

g 600 Redis (write-through)
ES

E 400 s RedisCluster (cache-aside)
< 200 |

=)

1000 5000 10000
Number of simultaneous users

Source: author's own development

Fig 1: Dependence of the average response time of a web
application on the number of simultaneous users in different
caching scenarios

As you can see from Fig 1, in the baseline scenario without
caching, the response time growth curve is almost
exponential, which indicates a rapid overload of the system
with an increase in the number of users. Instead, all
Redisoptions show a much slower increase in latency,
especially in the cache-aside and Redis Cluster
configurations. The lowest response time is maintained in
RedisCluster, even with 10,000 concurrent users, indicating
the effective scalability of the cluster approach. These
results clearly confirm the feasibility of using Redis as a key
component in the architecture of high-load web applications.
In addition to response time, a critical metric for evaluating
the performance of highly loaded web applications is system
throughput - the number of requests that can be
processedperunit of time (usually per second). It directly
reflects the ability of the server side to serve a large number
of users without reducing stability or increasing delays. This
is especially important in the context of microservice
architectures or API-oriented platforms where requests are
exchange intensively and with high frequency.

To measure the throughput, this study performed a series of
tests simulating simultaneous activity of 1000, 5000, and
10000 users. In each scenario (no cache, Rediscache-aside,
Redis write-through, RedisCluster), the maximum number
of requests per second (RPS) that the system could stably
process without errors, overload, or significant performance
loss was recorded (Table 2).

Table 2: Throughput (requests/second) for each caching scenario
under different loads

Scenario 1000 users | 5000 users | 10000 users
Without caching 87 61 35
Redis (cache-aside) 312 264 189
Redis (write-through) 284 241 168
RedisCluster (cache-aside) 345 297 226

Source: own development of the author

www.multiresearchjournal.com

The results of Table 2 show a significant increase in
throughput in all configurations that use Redis. In the
baseline scenario without caching, there is a rapid decrease
in the number of processed requests with increasing load:
the system is able to stably process only 35 requests per
second with 10,000 users, indicating a bottleneck in
interaction with the main database.

Using Redis in cache-aside mode can almost quadruple the
throughput even at maximum load - up to 189 requests per
second. This is due to the fact that a significant portion of
read requests are served without accessing PostgreSQL,
reducing the load on I/O and CPU. The write-through mode
also demonstrates consistently high performance, although
slightly lower than the cache-aside mode, which is
consistent with the additional costs of parallel
synchronization of data to the database and cache.

The best performance is observed in the RedisCluster
scenario: 345 requests/second with 1000 users and 226 with
10000, which confirms the effectiveness of load balancing
between multiple nodes and better scalability of the system.
Thus, throughput - as an integral indicator of real traffic
processing - clearly demonstrates the benefits of using Redis
for caching in conditions of intense interaction and confirms
the feasibility of its implementation in the architecture of
productive web systems.

To analyze the impact of the caching strategy on the
system's ability to process a large number of requests in real
time, a comparative assessment of the web application
throughput (measured in requests per second) was made in
each of the experimental scenarios. The empirical data was
obtained through load testing using the Locust tool, where
1000, 5000, and 10000 simultaneous users were modeled.
The throughput was recorded as the maximum value of
requests that were stably processed without exceeding the
response time limit and without HTTP errors.

Based on the collected results, a graph was built that
demonstrates the change in the intensity of request
processing depending on the selected caching configuration
and load level (Fig 2).

Comparing bandwidth between scenarios

\ s W ithout caching

s Redis (cache-aside)

400

..,,
D S h
S S o

o
S o

Redis (write-through)

Requests/second
e B
1]
=3

s R edisCluster (cache-aside)

73
=3

e

o

1000 5000 10000
Number of simultaneous users

Source: author's own development

Fig 2: Comparison of web application throughput between caching
scenarios under different load

As can be seen from Fig 2, the system throughput without
caching rapidly decreases with the number of users - from
87 RPS at 1000 requests to only 35 at 10000. This indicates
the limitations of the database in processing a large number
of competing transactions. In the Rediscache-aside
configuration, this figure increases to 189 RPS at maximum
load, which is almost six times higher than the result of the

1717

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies

baseline scenario. Write-through provides only slightly
lower throughput due to the need for synchronous writing to
two storages.

The highest performance was demonstrated by the system
with RedisCluster, which provided a throughput of 226 RPS
with 10,000 users. This confirms the effectiveness of the
scalable caching architecture based on Redisclustering,
which allows you to balance the load between nodes and
avoid bottlenecks during peak requests. The data obtained
allows us to reasonably recommend the use of Redis Cluster
in scenarios with high request density and linear scalability
requirements.

To comprehensively evaluate the effectiveness of caching
using Redis in the context of optimizing the load on the
server side of a web application, we analyzed the use of
hardware resources of the PostgreSQL database. In
particular, the average CPU utilization (CPU, in %) and the
amount of RAM (RAM, in MB) consumed by the database
during query processing were studied. The data was
recorded using the Prometheus monitoring system during
load testing at the maximum level of simulated load - 10,000
simultaneous users. This approach allows us to determine
the extent to which caching can reduce the intensity of
access to the database, unload its computing resources and
ensure stable operation of the system under peakloads.
Based on the obtained indicators, we have built graphs
showing the change in the level of CPU and memory usage
for each of the studied scenarios: without caching, with
Redis in cache-aside mode, with Redis in write-through
mode, and in the Redis Cluster cluster configuration (Fig 3,
Fig 4).

Database CPU usage

100
90 +

80 |
70 |
60 |
50

40
30 =—CPU usage (%)
20 ¢
10
0

CPU (%)

Without caching Redis (cache- Redis (write- RedisCluster
aside) through) (cache-aside)

Scenario

Source: author's own development

Fig 3: Database CPU usage in different caching scenarios

Fig 3 shows the average CPU utilization of the PostgreSQL
database when serving 10,000 simultaneous users,
demonstrating a clear relationship between the use of Redis
and a reduction in the computational load on the server. In
the baselineconfiguration without caching, CPU utilization
is 87%, which indicates that it is close to the critical stability
limit. Using Redis in cache-aside mode reduces this figure
to 54%, which indicates a significant offloading of the
database by processing a large share of requests directly
from memory. The write-through configuration
demonstrates a similar, thoughslightly higher, CPU
utilization rate of 59%, given the need for synchronized
writing to the cache and database. The lowest load - 46% -
was recorded in the RedisCluster scenario, which indicates
an effective load distribution between cachenodes and better
scalability with traffic growth.

www.multiresearchjournal.com

Database memory usage

2500 \
2000 \
500

000 == Memory usage (MB)

Memory (MB)

Without Redis (cache- Redis (write- RedisCluster
caching aside) through) (cache-aside)

Scenario

Source: author's own development

Fig 4: Database memory usage by PostgreSQL database under
different Rediscaching strategies (10000 concurrent users)

A similar pattern is demonstrated by the graph dedicated to
the use of RAM. In the baseline scenario without caching,
PostgreSQL consumes 2450 MB of RAM, which is the
result of intensive query caching at the database level and
storing temporary objects with a large number of
simultaneous transactions. Using Redis in cache-aside mode
can reduce RAM consumption to 1410 MB, which is almost
42%. In the case of write-through, the amount of memory
used is 1530 MB, which is slightly higher, given the need to
preserve data integrity when writing. The Redis Cluster
configuration demonstrates the lowest RAM consumption -
1280 MB, which further demonstrates the effectiveness of
the distributed cache architecture in the context of
processing a large number of simultaneous requests.

A comparative analysis of the CPU and RAM usage graphs
clearly shows that the implementation of Redis in the system
significantly reduces the resource load on the main database.
In terms of both CPU and RAM, the configuration without
caching is the most resource-intensive, which creates the
risk of performance loss during peakloads. On the contrary,
all Redisoptions provide a significant reduction in resource
consumption, especially in the case of RedisCluster, where
horizontal scaling results in the lowest load level. These
results confirm that Redis not only improves response time
and throughput, but also optimizes the use of server
infrastructure, which is critical for the stable operation of
highly loaded web services.

Discussion

Based on the experiments, it was found that the use of Redis
significantly improves the performance of the web
application in all key indicators compared to the baseline
scenario without caching. In particular, the average response
time under a load of 10,000 concurrent users in the cache-
less configuration was 1647 ms, while in the variant with
Redis in cache-aside mode it was 533 ms, with write-
through - 618 ms, and in RedisCluster - only 447 ms. Thus,
the reduction in response latency reaches more than 72.8%
in the case of RedisCluster, which indicates the high
efficiency of caching to improve system performance. A
similar trend was observed at other load levels, where the
advantage of Redis was statistically significant.

Comparing the caching strategies, we found that cache-
aside provided faster response times than write-through at
all load levels. For example, with 5000 users, the average
response time was 246 ms for cache-aside versus 289 ms for
write-through. At 10,000 users, the gap between the two
strategies reached 85 ms. These results are consistent with

1718

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies

architectural features: Write-through involves synchronous
writing to the cache and database, which creates an
additional load on the server, while cache-aside serves only
read requests and writes to the cache only when needed,
reducing overall latency.

The system scalability assessment showed that RedisCluster
is the most resilient to load growth. Under a load of 10,000
users, RedisCluster'sthroughput reached 226 requests per
second, while cache-aside on a single Redis provided 189,
write-through - 168, and without cache - only 35. Thus,
RedisCluster can increase throughput by almost 6.5 times
compared to the baseline scenario. It also demonstrated the
lowest load on the server infrastructure: CPU utilization
dropped to 46% and RAM consumption to 1280 MB, while
in the baseline scenario these figures were 87% and 2450
MB, respectively. This demonstrates the efficiency of
distributing requests between cachenodes and optimizing the
use of hardware resources.

Thus, the study allows us to conclude that Redis, especially
in a cluster configuration, not only improves the
performance of a web application, but also provides
scalability and reduces the load on the main database. The
chosen caching strategy has a significant impact on the
results: cache-aside proved to be more efficient in terms of
performance, while write-through provides better
consistency, but at a certain performance cost. All these
aspects should be taken into account when designing high-
load systems with critical response time and stability
requirements.

The results obtained in the study confirm the effectiveness
of Redis as a caching tool for high-load web applications.
All tested configurations with Redis provided a significant
reduction in response time compared to the baseline
scenario without cache — from 1647 ms to 447 ms under a
load of 10,000 simultaneous users. This effect is consistent
with the findings of Liu et al. (2024) 1%, who recorded a
significant performance improvement in response generation
systems based on large language models by pre-caching
frequently used queries in Redis. Their model demonstrates
that Redis can reduce the load on main computing resources
while maintaining the relevance of answers.

In the work of Singh ef al. (2022) %1, Redis as a cache and
messagequeue in social media analytics systems provides a
stable response at high request intensity. These findings are
confirmed in our RedisClusterconfiguration, which
supported processing over 220 requests/second without a
significant increase in latency. In a study by Patel et al.
(2021) ™1 comparing Redis with Memcached in mobile
cloud systems, the authors substantiate the advantage of
Redis in the context of supporting complex data types and
TTL management. This allows not only caching individual
values, but also structures such as hashes or sets, which was
critical in our prototype when storing aggregated user
sessionobjects.

The use of Redis in high-load information systems is also
described in Ye et al. (2022) 29, where it is used in a
traditional Chinese medicine data management system. The
study demonstrates that Redis reduces latency by up to 40%
by caching the most requestedrecords, similar to our cache-
aside configuration, where the average response time with
10,000 users was only 533 ms. Additionally, Su et al. (2023)
(23] proposed a combined cache strategy that uses Redis
together with filters (e.g., Bloomfilters) to avoid database
accesses. Although this optimization was not implemented

www.multiresearchjournal.com

in our testing, the results of the study indicate its potential
effectiveness in systems with uneven load distribution.
Memory optimization in Redis and the role of TTL
management policies are studied in Pan et al. (2022) 1131,
Their approach to locality-sensitive memory allocation is
consistent with the results of our RedisCluster scenario,
where the amount of memory used remained within 1280
MB even at maximum load. In addition, Zhang et al. (2023)
[27] analyzed a pattern of caching "hot" data from a relational
database through Redis, which provided a stable reduction
in latency. In our study, this approach allowed us to reduce
the average response time in the cache-aside scenario from
1647 ms (without cache) to 108 ms with 1000 users.

Thus, the results are consistent with existing research,
confirming that Redis, due to its low latency, support for
complex data structures, TTL mechanisms, and the ability to
scale horizontally (via RedisCluster), is one of the most
efficient caching solutions in modern web architectures. Its
advantages are especially noticeable when the load grows,
which makes Redis a key component of building scalable
and high-performance information systems.

Despite the empirical results, the study has a number of
limitations that necessitate a cautious interpretation of the
findings. One of the key limitations is the hardware
configuration of the test environment. All scenarios were
run on a single server with medium computing power (AWS
EC2 t3.medium), which does not fully reflect the real
conditions of productive environments with distributed
computing, autoscaling, and specialized cacheshards. A
similar limitation is also mentioned in SM et al. (2022) 22,
where they demonstrate that caching at the edge device level
has completely different performance indicators due to a
lack of resources and limited data channelbandwidth. In our
case, Redis demonstrated good performance on a single
node, but scaling this architecture in a distributed load
requires a separate empirical study.

The second important limitation is the use of synthetic
traffic generated by the Locust tool. Despite its popularity in
the field of load testing, this tool does not fully reproduce
real user behavior, does not model variable session patterns,
frequency irregularity of requests, or spontaneous load
peaks. As (Seth et al., 2023) I8 note, the limitations of the
simulation approach do not allow adequate reproduction of
the full life cycle of transactions in complex enterprise
systems. In view of this, the response time and throughput
indicators obtained in the study may differslightly from
those that will be recorded in a real production environment.
In addition, the study is limited in terms of processing write
operations. The tested scenarios with Redis did not cover
models with a high update rate or simultaneous changes to
data from multiple sources. As noted by Iyengar et al
(2023) U1, in systems with generative caching or LLM-
oriented services, it is critical to maintain the sequence of
writes to the cache and main storage, which is not always
possible to achieve when using the cache-aside strategy. In
our study, this strategy showed better performance, but it
does not guarantee data integrity in the event of failures or
transaction contention.

Another limitation is the lack of automatic scaling of Redis
during testing. All scenarios were run with a predefined
topology, without dynamic expansion mechanisms. The
work of Priovolos et al. (2022) ') emphasizes the need to
implement elasticcache management in distributed systems
where the load changes unpredictably. The absence of this

1719

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies

component limits the reliability of the RedisCluster
assessment as a fully scalable solution.

It is also worth noting that the study did not include an
analysis of Redisfault tolerance in the event of individual
node failure. As demonstrated by (Andrade et al.,2022) [,
even in serverless architectures, the cache system needs
mechanisms for self-healing and load balancing in case of
partialdegradation. In our case, RedisCluster was not
subjected to fault simulation, so the architecture's resilience
to the loss of individual components remained beyond the
scope of the evaluation.

Another limitation is the lack of processing of streaming or
stateful data. The work of Gupta et al. (2023) © notes that
for a real Big Data stream, caching should be integrated with
stateful processing and used as part of a delayminimization
strategy. Our testing, on the other hand, covered only REST-
like scenarios where transactions were independent and did
not require long-term context.

In addition, the TTL policy in Redis was setmanually (60
seconds) and did not adapt to the frequency of requests. In
the context of real-world use, this can lead to both
prematurepurging and storing outdated data. The need for
dynamic TTL has already been formulated in Pan et al.
(2021) 31 where they proposed a model of TTL
reconfiguration according to the frequency of accesses,
which could potentially improve cache efficiency in our
case.

Finally, the study did not cover architectures running in
serverless or containerized environments, in particular in
combination with messagebrokers. In Ghosh et al. (2022) [
consider the difficulties of caching in serverless models due
to the instability of the runtime environment. Similar
challenges are also analyzed in the study by Wahono et al.
(2023) 281 which shows that in clusteredcontainer systems,
caching efficiency significantly depends on the level of
network synchronization between brokers and caches. These
aspects were left out of our experimental design and need to
be evaluatedseparately in the context of a real cloud
deployment environment.

Thus, while the results of the study are valid for the classic
scenario of a web application with a centralizedcache,
further research should take into account the features of
containerization, streaming processing, fault tolerance,
dynamic scaling, and contextually adaptive TTL control to
ensure that Redis' performance is fully generalized to
complex and realistic environments.

Taking into account the results obtained and their
comparison with existing approaches to caching in high-load
web applications, we can formulate a number of practically
significant conclusions that have direct application in the
architectural design of modern information systems. First of
all, the use of Redis as a caching mechanism is a reasonable
choice for systems characterized by a high frequency of read
operations, a large number of simultaneous users, and
requirements to minimize data access latency. Redis has
been empirically proven to reduce average response time by
more than three times compared to a scenario without
caching, while reducing the load on the main database in
terms of both CPU and RAM. This makes Redis particularly
suitable for use in e-commerce systems, streaming services,
dashboards, and API-oriented environments.

Regarding the choice of caching strategy, the results of the
study indicate the advantage of the cache-aside approach in
typical web scenarios with a predominance of read requests.

www.multiresearchjournal.com

This approach ensures minimal delays in data access by
caching only when necessary, without synchronous writing
to the main storage, which increases the overall system
throughput. At the same time, write-through, as a strategy
that guarantees consistency between the cache and the
database through simultaneous writing, has proven to be
somewhatslower, but may be preferable in systems where
transactional integrity is critical or where there is no way to
re-query in the event of a cache failure.

Thus, from a practical point of view, it is advisable to use
cache-aside in most scenarios with read-dominated
operations, as well as in distributed systems with low real-
time consistency requirements. Instead, write-through can
be considered the optimal solution for banking systems,
payment gateways, accounting and registration services,
where losses due to cachemisses are unacceptable, and the
cache must reflect the current state of data without
delayedupdates. Both strategies can be effectively
implemented through Redis, which confirms its flexibility
and practical applicability to a wide range of applications.

Conclusion

The results of the study convincingly demonstrate the
effectiveness of Redis as a caching tool in high-load web
applications. Across all key metrics - response time,
throughput, and database load - Redis implementation has
resulted in a significant improvement in system
performance. In particular, the use of Redis has reduced the
average response time by more than three times, increased
the number of processed requests per second to 226 with
10,000 simultaneous users, and significantly reduced the
consumption of CPU and memory resources of the main
database. This confirms that Redis is the optimal solution
for systems with a high volume of read requests.

The cache-aside strategy proved to be the most effective,
providing minimal latency and high performance by caching
only the necessary data. Its use is advisable in most typical
scenarios where read operations prevail over writing. In
turn, RedisCluster demonstrated the highest stability when
scaling the load, making it a reasonable choice for
distributed systems with a large number of simultaneous
users.

Thus, the study fully achieved its goal and provided
comprehensive answers to the research questions. The
obtained results can be directly used by web system
developers to make a reasonable choice of
cachingconfiguration. Using Redis with cache-aside is the
best option for performance in read-only systems, while
RedisCluster is recommended to maintain scalability under
peakloads.

Further research should focus on evaluating Redis in
combination with distributed databases, comparing it with
alternative cache solutions (in particular, KeyDB), and
analyzing its energy consumption in cloud environments.
This will allow us to better understand the role of Redis in
designing energy-efficient and high-performance next-
generation web architectures.

References

1. Andrade X, Cedeno J, Boza E, Aragon H, Abad C,
Murillo J. Optimizing cloud caches for free: A case for
autonomic systems with a serverless computing
approach. 2019 IEEE 4th International Workshops on
Foundations and Applications of Self* Systems

1720

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies

10.

11.

12.

13.

14.

(FAS*W), 2019,
W.2019.00044
Ashokan P, Golli A. Scalable backend solutions for
real-time machine learning applications in web and
mobile platforms. J Appl Sci. 2024; 4(9):8-14.
Retrieved from:
https://sarcouncil.com/2024/09/scalable-backend-
solutions

Catovi¢ A, Ceke D, Buzadija N. A performance
comparison of caching systems in the .NET 6
framework. Elektrotehniski Vestnik. 2023; 90(3):1-8.
Retrieved from:
https://www.researchgate.net/publication/372958856
Faridi MT, Singh K, Soni K, Negi S. Memcached vs
Redis caching optimization comparison using machine
learning. ICACRS. 2023; 2:1153-1159. Doi:
10.1109/ICACRS58579.2023.10404339

Ghosh BC, Addya SK, Somy NB, Nath SB,
Chakraborty S, Ghosh SK. Caching techniques to
improve latency in serverless architectures. In 2020
International Conference on Communication Systems &
Networks (COMSNETS), 2020, 666-669. Doi:
10.1109/COMSNETS48256.2020.9027427

Gupta A, Jain S. Optimizing performance of real-time
big data stateful streaming applications on cloud. 2022
IEEE International Conference on Big Data and Smart
Computing (BigComp), 2022, 1-4. Doi:
10.1109/BigComp54360.2022.00010

Iyengar A, Kundu A, Kompella R, Mamidi SN. A
generative caching system for large language models.
arXiv preprint arXiv:2503.17603, 2025. Retrieved
from: https://doi.org/10.48550/arXiv.2503.17603

Joshi PK. Redis cache optimization for payment
gateways in the cloud. Int J] Emerg Trends Comput Sci
Inf Technol. 2023; 4(2):28-36. Retrieved from:
https://www.researchgate.net/publication/390470192
Kumar P. User experience optimization in SAP
SuccessFactors Learning: A caching-driven approach to
perceived performance. IJLRP. 2025; 6(6):1-8. Doi:
10.70528/IJLRP.v6.16.1585

Liu P, Xu Z, Wang C. A Redis Cache-based approach
to high concurrency response in applications of large
language models. In: Yu H, et al. Computer
Applications. CCF NCCA 2024. Communications in
Computer and Information Science. 2024; 2274:107-
119. Doi: https://doi.org/10.1007/978-981-97-9671-7 9
Malancioiu D-G, Foldvari H-N, Craciun F. Optimizing
cold start performance in serverless computing
environments. SYNASC. 2024; 26:140-148. Doi:
10.1109/SYNASC65383.2024.00035

Pan C, Luo Y, Wang X, Wang ZP. PRedis: penalty and
locality-aware memory allocation in Redis. In:
Proceedings of the ACM Symposium on Cloud
Computing, 2019, 193-205. Doi:
https://doi.org/10.1145/3357223.3362729

Pan C, Wang X, Luo Y, Wang Z. Penalty-and locality-
aware memory allocation in Redis using enhanced
AET. ACM Trans Storage (TOS). 2021; 17(2):1-45.
Doi: https://doi.org/10.1145/3447573

Patel J, Halabi T. Optimizing the performance of web
applications in mobile cloud computing. 2021 IEEE 6th
International Conference on Smart Cloud (SmartCloud),
2021, 33-37. Doi:
10.1109/SmartCloud52277.2021.00013

140-145. Doi: 10.1109/FAS-

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

www.multiresearchjournal.com

Priovolos T, Maroulis S, Kalogeraki V. A framework
for managing an Elastic Redis Cache. 2019 38th
Symposium on Reliable Distributed Systems (SRDS),
2019, 363-366. Doi: 10.1109/SRDS47363.2019.00051
Ren J, Li A. System design practice for big data. In:
Silicon Valley Python Engineer Interview Guide: Data
Structure, Algorithm, and System Design. Singapore,
Springer Nature Singapore, 2025, 355-388. Doi:
10.1007/978-981-96-3201-5 21

Sanka AI, Chowdhury MH, Cheung RCC. Efficient
high-performance FPGA-Redis hybrid NoSQL caching
system for blockchain scalability. Comput Commun.
2021; 169:81-91. Doi: 10.1016/j.comcom.2021.01.017
Seth D, Singh A, Panyam S. Distributed caching
challenges and strategies in enterprise applications. Int
Res J Modern Eng Technol Sci. 2023; 6:115-126. Doi:
https://doi.org/10.56726/IRIMETS58564

Shethiya AS. Scalability and performance optimization
in web application development. Integr J Sci Technol.
2025; 2(1):1-7. Retrieved from:
https://ijstpublication.com/index.php/ijst/article/view/1
Singh RK, Verma HK. Redis-based messaging queue
and cache-enabled parallel processing social media
analytics framework. The Computer Journal. 2022;
65(4):843-857. Doi:
https://doi.org/10.1093/comjnl/bxaal 14

Sivakumar S. Performance optimization of large
language models (LLMs) in web applications. Int J Adv
Sci Res. 2024; 8:1077-1096. Retrieved from:
https://www.ijtsrd.com/papers/ijtsrd64531.pdf

SM S, Bhadauria A, Nandy K, Upadhyay S.
Lightweight data storage and caching solution for
MQTT broker on edge - A case study with SQLite and
Redis. 2024 IEEE 2l1st International Conference on
Software Architecture Companion (ICSA-C), 2024,
368--372. Doi: 10.1109/ICSA-C63560.2024.00066

Su Q, Gao X, Zhang X, Wang Z. A novel cache
strategy leveraging Redis with filters to speed up
queries. In: International Conference on High
Performance Computing and Communication (HPCCE
2021). SPIE, 2022, 150-154. Doi:
https://doi.org/10.1117/12.2628119

Wahono BHYV, Ijtihadie RM. Caching cluster of
distributed MQTT broker on containerized architecture.
2024 International Conference on Electrical
Engineering and Computer Science (ICECOS), 2024,
349-353. Doi: 10.1109/ICEC0S63900.2024.10791203
Xu Y, He P, Zhang X, Hu H. Research and
implementation of Redis-based data hot-table caching
mode. ISCAIT. 2025; 4:2172-2175. Doi:
10.1109/ISCAIT64916.2025.11010306

Ye Q, Zhang X, Yao L. Performance optimization
method for Traditional Chinese Medicine information
systems in high-concurrency and big data scenarios
based on a comprehensive architecture. In: Proceedings
of the 4th Asia-Pacific Artificial Intelligence and Big
Data Forum, 2024, 144-150. Doi:
https://doi.org/10.1145/3718491.371851

Zhang J, Yao Z, Feng J. NCRedis: An NVM-optimized
Redis with memory caching. Lecture Notes in
Computer Science. 2021; 12924:90-104. Doi:
10.1007/978-3-030-86475-0 7

Zhang Z, Li X, Zhao Q, Liao X, Zhu Z. A study on
Redis-based aided caching pattern for relational

1721

http://www.multiresearchjournal.com/
https://sarcouncil.com/2024/09/scalable-backend-solutions
https://sarcouncil.com/2024/09/scalable-backend-solutions
https://www.researchgate.net/publication/372958856
https://doi.org/10.48550/arXiv.2503.17603
https://www.researchgate.net/publication/390470192
https://doi.org/10.1007/978-981-97-9671-7_9
https://doi.org/10.1145/3357223.3362729
https://doi.org/10.1145/3447573
https://doi.org/10.56726/IRJMETS58564
https://ijstpublication.com/index.php/ijst/article/view/1
https://doi.org/10.1093/comjnl/bxaa114
https://www.ijtsrd.com/papers/ijtsrd64531.pdf
https://doi.org/10.1117/12.2628119
https://doi.org/10.1145/3718491.371851

International Journal of Advanced Multidisciplinary Research and Studies

29.

30.

database hotspot data. 2024 4th International
Conference on Industrial Automation, Robotics and
Control Engineering (IARCE), 2024, 336-342. Doi:
10.1109/IARCE64300.2024.00069

Zhou S, Mao Q, Cheng Y, Qi H, Huang Y, Cai P, Zhu
JP. RedTAO: A trillion-edge high-throughput graph
store. Companion of the 2025 International Conference
on Management of Data, 2025, 716-728. Doi:
10.1145/3722212.3724449

Zhu'Y, Xia T, Zhu T, Zhao Z, Li K, Hu X. RAPO: An
automated performance optimization tool for Redis
clusters in distributed storage metadata management.
IEEE Access. 2025; 13:58060-58074. Doi:
10.1109/ACCESS.2025.3556240

www.multiresearchjournal.com

1722

http://www.multiresearchjournal.com/

