

1714

Int. j. adv. multidisc. res. stud. 2025; 5(4):1714-1722

Using Redis for Caching Optimization in High-Traffic Web Applications

1 Liubomyr Kaptosv
1 Bachelor’s Degree in Computer Science, Odesa National University of Technology, Odesa, Ukraine

1 Senior Software Engineer at SmartBarrel, United States

Corresponding Author: Liubomyr Kaptosv

Abstract

The relevance of this study lies in the growing demand for

high-load web applications, especially in e-commerce,

social media, and streaming platforms, where performance,

stability, and scalability are crucial. As user loads increase,

traditional relational database encounter performance

bottlenecks, highlighting the need for efficient caching

solutions. Redis, a high-performance in-memory key-value

store, is frequently used in such scenarios; however, the

impact of different caching strategies on its performance

remains understudied.

The purpose of this article is to comprehensively evaluate

the effectiveness of Redis as a caching tool for optimizing

web application performance. The experimental design

involved testing a web application backed by PostgreSQL

under four conditions: no cache, Redis with cache-aside,

Redis with write-through, and Redis Cluster. User loads of

1,000, 5,000, and 10,000 were simulated using Locust, and

performance metrics were collected through Prometheus.

Statistical analysis was performed using a t-test, and results

were visualized with graphs and tables.

The results show that Redis significantly decreases average

response time (e.g., from 1146 ms to 323 ms in cache-aside

mode), increases throughput (up to 226 requests/sec), and

reduces the load on the main database. Cache-aside proved

most effective for read-intensive workloads, while Redis

Cluster offered better stability under high concurrency.

The findings confirm Redis as a valuable component for

high-load applications. Future research should explore Redis

in distributed database settings, compare it to emerging tools

like KeyDB, and examine its energy efficiency in cloud

environments.

Keywords: Operational Analytics, Latency Minimization, Data Consistency, Cache Invalidation, Load Balancing

Introduction

In the modern era of digital transformation, highly loaded web applications such as e-commerce platforms (Amazon, Alibaba),

social networks (Facebook, Twitter), and streaming services (Netflix, YouTube) are becoming more widespread. Growing user

expectations regarding the speed of access to content and the constant availability of services place strict requirements on the

architecture of web applications. The main challenges when serving a large number of simultaneous users are delays in

processing HTTP requests, database overload, and scalability limitations of traditional server solutions. In this context, caching

is of particular importance - an effective method of reducing the load on the database by storing the results of frequent queries

in a fast-accessible storage. Caching can significantly reduce server response time, improve application performance, and

ensure system resilience to peakloads. Among the existing tools for implementing caching, Redis plays a key role - a high-

performance in-memory open source database that supports not only simple key values but also complex data structures: lists,

sets, hash tables, etc. Due to minimal data access latency and the ability to process millions of operations per second, Redis has

become an integral component in such highly loaded systems as Twitter, GitHub, and Stack Overflow. However, even

thoughRedis is widely integrated into modern architectures, systems that process a large number of transactions often face

problems with scalability, effective TTL (time-to-live) management, cacheoutages, and synchronization with the main

database. There is a lack of analysis in the scientific and applied literature on the impact of different Redis configurations -

both in terms of cache size and preemptive and clustering policies - on system performance in real-world environments.

An analysis of current research on the use of Redis to optimize caching in high-load web applications allows us to distinguish

four interrelated research areas. First of all, the study of architectural solutions to improve caching efficiency using Redis is of

particular interest. In the work of Xu et al. (2021) [25] proposed a hottable-based caching model that provides selective cache

Received: 08-07-2025

Accepted: 18-08-2025

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

1715

support for the most requestedobjects, minimizing the load

on the database during high-frequency access. Malancioiu et

al. (2022) [11] analyzed the mechanisms for reducing latency

during cold start in serverless environments, pointing to

Redis as a tool for pre-saving configurations and metadata,

which provides accelerated initialization of functions.

Kumar (2023) [9] used Redis in the SAP SuccessFactors

environment to form a subjective sense of performance,

emphasizing the role of asynchronouscaching and UX

optimization at the interface level. Summarizing the results

of this area, it is worth noting that research on the dynamic

adaptation of TTL parameters in Rediscaches, as well as

models for predicting the demand for real-time cache

requests, remain relevant.

The second area is devoted to the comparative analysis of

Redis with other caching systems and the study of its

internal optimizations. In the work of Faridi et al. (2021) [4]

used machine learning algorithms to analyze the

effectiveness of Redis and Memcached, which allowed them

to establish the advantages of Redis in terms of latency and

adaptability to load changes. Ćatović et al. (2022) [3]

compared the performance of cache systems in .NET 6,

revealing the higher efficiency of Redis when working with

large objects due to the support of more complex data types.

Zhang et al. (2023) [27] presented NCRedis, a modified

version of Redisoptimized for non-volatile memory (NVM),

which reduces energy consumption and speeds up cache

access without losingconsistency. In this context, further

research is needed to model Rediscache algorithms for non-

standard memory architectures, in particular for edge

computing and embedded systems with limited resources.

The third research vector concerns the integration of Redis

into specific application environments and the analysis of

the impact of caching on the quality of user experience. The

work of Joshi (2024) [8] analyzes the optimization of Redis

for payment gateways in cloud infrastructures, with a focus

on improving transaction reliability and reducing collisions

during parallel writing. Shethiya (2023) [19] studied Redis as

a means of scaling in multi-tiered web applications,

emphasizing the importance of cache to stabilize responses

during sudden increases in traffic. Sivakumar (2023) [21]

demonstrated the effectiveness of Redis when working with

large language models in a browser, where caching the

results of inference avoids duplication of computations.

Ashokan and Golli (2022) [2] studied Redis as part of a real-

time backend for machine learning applications, especially

in terms of low latency event processing. Taken together,

these results point to the need for further research on the

formation of templates for integrating Redis into domain

architectures with high SLA requirements, as well as

studying the cache's behavior under hybrid workloads.

The fourth area covers the use of Redis as a component of

scalable and distributed infrastructures. In the study by Zhou

et al. (2023) [29], Redis is applied to the high-performance

graph system RedTAO with a trillionedges, where Redis

provides intermediatecaching of nodes and edges to reduce

the load on the main storage. Ren and Li (2022) [16] analyzed

Redis in the context of big data architecture, focusing on the

role of Redis as a buffer between the collection, aggregation,

and analytics modules. Zhu et al. (2023) [30] proposed

RAPO, an automated tool for load balancing in

Redisclusters in metadata-intensive environments. Sanka et

al. (2023) [17] developed an FPGA-Redis hybrid caching

system for blockchain networks, where Redis acts as a

controller of high-speed access to the transaction pool. In

view of this, further research on Redis as a cache component

in composite systems with a heterogeneous computing

architecture is promising, in particular with a focus on

automatic scaling and maintaining consistency in a cluster

environment.

Thus, the current discourse on using Redis to optimize

caching in high-load web applications covers four areas:

architectural cache optimization, comparative performance

of Redis in the context of alternative solutions, integration

into domain web systems, and application in scalable

distributed environments. Each of these areas provides a

promising basis for further study of Redis as a key

component of infrastructure performance in systems with

high requirements for data availability and processing speed.

Despite a considerableamount of research on caching in web

applications, several critical aspects remain unresolved,

which complicate the effective implementation of Redis in

high-load environments. In particular, there is a lack of

research on how specific caching strategies (e.g., cache-

aside or write-through) affect response time and system

throughput in the face of large-scale traffic. In addition, the

lack of empirical studies comparing Redis performance in

different configurations, such as RedisCluster vs. single

node, limits the ability to develop universal

recommendations for system architects.

The proposed research fills these gaps by experimentally

comparing caching strategies and Redis scaling models

based on real-world load data. By using a standardized test

environment, modern monitoring and statistical analysis

tools, we were able not only to quantify the effectiveness of

individual approaches, but also to formulate practical

recommendations for choosing configurations depending on

the nature of the requests and the architecture of the web

application. Thus, the results of the study expand the

empirical base and contribute to a deeper understanding of

the role of Redis in ensuring the scalability and stability of

high-load systems.

The purpose of the article is to evaluate the effectiveness of

using Redis as a caching tool to optimize the performance of

high-load web applications. Particular emphasis is placed on

analyzing the impact of different caching strategies and

Redis configurations on system performance, stability, and

scalability.

To achieve this goal, the article solves the following tasks:

1. Analyze the impact of using Redis on the response time

and throughput of a web application under high load

conditions;

2. To compare the effectiveness of the main caching

strategies - in particular, cache-aside and write-through

- when using Redis in a real environment;

3. Evaluate the impact of Redis scaling (e.g.,

implementing RedisCluster) on performance compared

to using a single Redis instance.

4. To formulate recommendations for choosing the

optimalRedisconfiguration depending on the nature of

the workload and architectural features of the web

application.

Methodology

As part of the study, we implemented a full cycle of

experimental analysis of Redis performance as a caching

tool in high-load web applications. For this purpose, we

created a test environment that models the typical

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

1716

architecture of a modern web service. The server

infrastructure was based on a t3.medium AWS EC2 virtual

instance with two virtual processors (vCPUs) and 4 GB of

RAM, which provides representative computing power for

medium-loaded services. The web application was

developed on the Node.js platform using the Express

framework, and the PostgreSQL database was used as the

main data storage. Redis version 7.0 was integrated as a

cache service, with the ability to test in single instance and

cluster deployment modes of RedisCluster. The load was

modeled with the Locust tool, which allows simulating the

simultaneous activity of a large number of users, and

Prometheus was used to monitor system resources and

performance metrics.

The experiment procedure involved the sequential

configuration of a web application with a connection to

PostgreSQL and the implementation of cachingfunctionality

using Redis. Two main caching strategies were modeled:

cache-aside, where data is loaded into the cache on demand,

and write-through, which involves simultaneous writing to

the cache and database. For all scenarios, the TTL (time-to-

live) of cachedobjects was set to 60 seconds, which allowed

us to track the dynamics of updating and purging records.

To ensure comparability of the data, the experiments were

conducted in four separate scenarios: without caching, with

Redis in cache-aside mode, with Redis in write-through

mode, and with Redis Cluster in cache-aside mode. For each

scenario, threerepeated tests were conducted under the load

of 1000, 5000, and 10000 simulated users, respectively,

which allowed us to take into account the impact of

scalability on caching efficiency.

The experimental data was collected automatically through

Prometheus, which ensured the recording of key indicators

in real time: average response time, median, 95th percentile,

throughput (requests per second), as well as the level of

CPU and RAM usage on the database side. Statistical

methods were used to further analyze the results, including a

t-test to identify statistically significant differences between

the scenarios. The obtained data was visualized in the form

of graphs and tables, which made it possible not only to

quantify but also to qualitatively assess the impact of

different caching approaches on system performance under

increasing load. This approach provided an objective and

reproducible assessment of Redis's performance in the

context of optimizing the performance of high-load web

applications.

Results

One of the most important characteristics of highly loaded

web applications is response time - the delay between the

user sending a request to the server and receiving a

response. This indicator has a direct impact on user

experience, especially in critical areas such as e-commerce,

banking, streaming services, or registration systems.

According to industry research, an increase in latency of just

100 ms can lead to a significant decrease in conversion or

loss of user engagement. Therefore, in this study, response

time was chosen as the main metric for comparing the

effectiveness of different caching strategies using Redis.

The purpose of this stage is to analyze how changing the

cache architecture (no caching, using Redis with cache-

aside, write-through, Redis Cluster) affects the average

response time of a web application under increasing load. In

each scenario, testing was performed at three levels of

simulated load - 1000, 5000, and 10000 simultaneous users.

This approach made it possible to simulate both moderate

and extremeloadstypical of peakperiods in real systems.

For the sake of comparison accuracy, only response times

during stable system operation, after the cache has warmed

up, i.e. based on the "hot" cache, were taken into account to

minimize fluctuations caused by the first requests

(coldcache). Response times were measured directly at the

level of client HTTP requests, taking into account the full

processing cycle (including network connection time,

application logic processing, cache or database access, and

response generation). The measurements for each scenario

were repeatedthree times to reduce the impact of random

disturbances (e.g., a short-term load peak or GC). The

results are shown in Table 1.

Table 1: Average response time (ms) of a web application under

different caching scenarios with increasing load

Scenario 1000 users 5000 users 10000 users

Without caching 312 845 1647

Redis (cache-aside) 108 246 533

Redis (write-through) 127 289 618

RedisCluster (cache-aside) 96 207 447

Source: own development of the author

The results clearly demonstrate that Redis integration

significantly improves web application performance by

reducing access time to frequently used data. In the baseline

scenario without caching, the average response time

increases almost exponentially - from 312 ms with 1000

users to more than 1.6 seconds with a load of 10,000 users.

This confirms the high load on the main PostgreSQL

database, which does not have time to process requests in

conditions of competitive access to disk resources.

The scenario with Redis Cluster in cache-aside mode was

the most advantageous. Due to the distribution of data

among several clusternodes, the system maintains a low

response time even under a load of 10,000 users - 447 ms,

which is more than three times faster than without caching.

This demonstrates the effective horizontal scalability of

RedisCluster and its suitability for critical loaded systems

that require high resilience to traffic peaks.

The scenario with Redis in write-through mode also showed

improvement, but the average response time was slightly

higher compared to cache-aside. This is because write-

through involves synchronous writes to both Redis and

PostgreSQL, which adds additional latency with each write.

However, this strategy has advantages in ensuring data

consistency, and it is advisable to use it in systems where it

is critical to preserve every record (for example, financial

transactions).

In practice, these results confirm that using Redis in a cache-

aside configuration provides the best balance between

performance and ease of implementation. And with

increasing requirements for scalability and fault tolerance,

the transition to Redis Cluster allows you to achieve a

significant performance gain without radically changing the

caching logic. Thus, the optimal strategy depends on the

type of load, the frequency of data changes, and the

criticality of latency - and the results of this study can serve

as a basis for making architectural decisions in real web

projects.

In order to visually compare the effectiveness of different

caching strategies in a web application under increasing

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

1717

load, a graph of the average response time versus the

number of simultaneous users was built. The graph was built

using empirical data obtained from load testing for four

scenarios: without caching, with Redis in cache-aside and

write-through modes, and using RedisCluster. The graphical

interpretation of the results allows you to visualize the

increase in latency in each case and justify the choice of the

optimal system configuration for a high-load environment

(Fig 1).

Source: author's own development

Fig 1: Dependence of the average response time of a web

application on the number of simultaneous users in different

caching scenarios

As you can see from Fig 1, in the baseline scenario without

caching, the response time growth curve is almost

exponential, which indicates a rapid overload of the system

with an increase in the number of users. Instead, all

Redisoptions show a much slower increase in latency,

especially in the cache-aside and Redis Cluster

configurations. The lowest response time is maintained in

RedisCluster, even with 10,000 concurrent users, indicating

the effective scalability of the cluster approach. These

results clearly confirm the feasibility of using Redis as a key

component in the architecture of high-load web applications.

In addition to response time, a critical metric for evaluating

the performance of highly loaded web applications is system

throughput - the number of requests that can be

processedperunit of time (usually per second). It directly

reflects the ability of the server side to serve a large number

of users without reducing stability or increasing delays. This

is especially important in the context of microservice

architectures or API-oriented platforms where requests are

exchange intensively and with high frequency.

To measure the throughput, this study performed a series of

tests simulating simultaneous activity of 1000, 5000, and

10000 users. In each scenario (no cache, Rediscache-aside,

Redis write-through, RedisCluster), the maximum number

of requests per second (RPS) that the system could stably

process without errors, overload, or significant performance

loss was recorded (Table 2).

Table 2: Throughput (requests/second) for each caching scenario

under different loads

Scenario 1000 users 5000 users 10000 users

Without caching 87 61 35

Redis (cache-aside) 312 264 189

Redis (write-through) 284 241 168

RedisCluster (cache-aside) 345 297 226

Source: own development of the author

The results of Table 2 show a significant increase in

throughput in all configurations that use Redis. In the

baseline scenario without caching, there is a rapid decrease

in the number of processed requests with increasing load:

the system is able to stably process only 35 requests per

second with 10,000 users, indicating a bottleneck in

interaction with the main database.

Using Redis in cache-aside mode can almost quadruple the

throughput even at maximum load - up to 189 requests per

second. This is due to the fact that a significant portion of

read requests are served without accessing PostgreSQL,

reducing the load on I/O and CPU. The write-through mode

also demonstrates consistently high performance, although

slightly lower than the cache-aside mode, which is

consistent with the additional costs of parallel

synchronization of data to the database and cache.

The best performance is observed in the RedisCluster

scenario: 345 requests/second with 1000 users and 226 with

10000, which confirms the effectiveness of load balancing

between multiple nodes and better scalability of the system.

Thus, throughput - as an integral indicator of real traffic

processing - clearly demonstrates the benefits of using Redis

for caching in conditions of intense interaction and confirms

the feasibility of its implementation in the architecture of

productive web systems.

To analyze the impact of the caching strategy on the

system's ability to process a large number of requests in real

time, a comparative assessment of the web application

throughput (measured in requests per second) was made in

each of the experimental scenarios. The empirical data was

obtained through load testing using the Locust tool, where

1000, 5000, and 10000 simultaneous users were modeled.

The throughput was recorded as the maximum value of

requests that were stably processed without exceeding the

response time limit and without HTTP errors.

Based on the collected results, a graph was built that

demonstrates the change in the intensity of request

processing depending on the selected caching configuration

and load level (Fig 2).

Source: author's own development

Fig 2: Comparison of web application throughput between caching

scenarios under different load

As can be seen from Fig 2, the system throughput without

caching rapidly decreases with the number of users - from

87 RPS at 1000 requests to only 35 at 10000. This indicates

the limitations of the database in processing a large number

of competing transactions. In the Rediscache-aside

configuration, this figure increases to 189 RPS at maximum

load, which is almost six times higher than the result of the

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

1718

baseline scenario. Write-through provides only slightly

lower throughput due to the need for synchronous writing to

two storages.

The highest performance was demonstrated by the system

with RedisCluster, which provided a throughput of 226 RPS

with 10,000 users. This confirms the effectiveness of the

scalable caching architecture based on Redisclustering,

which allows you to balance the load between nodes and

avoid bottlenecks during peak requests. The data obtained

allows us to reasonably recommend the use of Redis Cluster

in scenarios with high request density and linear scalability

requirements.

To comprehensively evaluate the effectiveness of caching

using Redis in the context of optimizing the load on the

server side of a web application, we analyzed the use of

hardware resources of the PostgreSQL database. In

particular, the average CPU utilization (CPU, in %) and the

amount of RAM (RAM, in MB) consumed by the database

during query processing were studied. The data was

recorded using the Prometheus monitoring system during

load testing at the maximum level of simulated load - 10,000

simultaneous users. This approach allows us to determine

the extent to which caching can reduce the intensity of

access to the database, unload its computing resources and

ensure stable operation of the system under peakloads.

Based on the obtained indicators, we have built graphs

showing the change in the level of CPU and memory usage

for each of the studied scenarios: without caching, with

Redis in cache-aside mode, with Redis in write-through

mode, and in the Redis Cluster cluster configuration (Fig 3,

Fig 4).

Source: author's own development

Fig 3: Database CPU usage in different caching scenarios

Fig 3 shows the average CPU utilization of the PostgreSQL

database when serving 10,000 simultaneous users,

demonstrating a clear relationship between the use of Redis

and a reduction in the computational load on the server. In

the baselineconfiguration without caching, CPU utilization

is 87%, which indicates that it is close to the critical stability

limit. Using Redis in cache-aside mode reduces this figure

to 54%, which indicates a significant offloading of the

database by processing a large share of requests directly

from memory. The write-through configuration

demonstrates a similar, thoughslightly higher, CPU

utilization rate of 59%, given the need for synchronized

writing to the cache and database. The lowest load - 46% -

was recorded in the RedisCluster scenario, which indicates

an effective load distribution between cachenodes and better

scalability with traffic growth.

Source: author's own development

Fig 4: Database memory usage by PostgreSQL database under

different Rediscaching strategies (10000 concurrent users)

A similar pattern is demonstrated by the graph dedicated to

the use of RAM. In the baseline scenario without caching,

PostgreSQL consumes 2450 MB of RAM, which is the

result of intensive query caching at the database level and

storing temporary objects with a large number of

simultaneous transactions. Using Redis in cache-aside mode

can reduce RAM consumption to 1410 MB, which is almost

42%. In the case of write-through, the amount of memory

used is 1530 MB, which is slightly higher, given the need to

preserve data integrity when writing. The Redis Cluster

configuration demonstrates the lowest RAM consumption -

1280 MB, which further demonstrates the effectiveness of

the distributed cache architecture in the context of

processing a large number of simultaneous requests.

A comparative analysis of the CPU and RAM usage graphs

clearly shows that the implementation of Redis in the system

significantly reduces the resource load on the main database.

In terms of both CPU and RAM, the configuration without

caching is the most resource-intensive, which creates the

risk of performance loss during peakloads. On the contrary,

all Redisoptions provide a significant reduction in resource

consumption, especially in the case of RedisCluster, where

horizontal scaling results in the lowest load level. These

results confirm that Redis not only improves response time

and throughput, but also optimizes the use of server

infrastructure, which is critical for the stable operation of

highly loaded web services.

Discussion

Based on the experiments, it was found that the use of Redis

significantly improves the performance of the web

application in all key indicators compared to the baseline

scenario without caching. In particular, the average response

time under a load of 10,000 concurrent users in the cache-

less configuration was 1647 ms, while in the variant with

Redis in cache-aside mode it was 533 ms, with write-

through - 618 ms, and in RedisCluster - only 447 ms. Thus,

the reduction in response latency reaches more than 72.8%

in the case of RedisCluster, which indicates the high

efficiency of caching to improve system performance. A

similar trend was observed at other load levels, where the

advantage of Redis was statistically significant.

Comparing the caching strategies, we found that cache-

aside provided faster response times than write-through at

all load levels. For example, with 5000 users, the average

response time was 246 ms for cache-aside versus 289 ms for

write-through. At 10,000 users, the gap between the two

strategies reached 85 ms. These results are consistent with

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

1719

architectural features: Write-through involves synchronous

writing to the cache and database, which creates an

additional load on the server, while cache-aside serves only

read requests and writes to the cache only when needed,

reducing overall latency.

The system scalability assessment showed that RedisCluster

is the most resilient to load growth. Under a load of 10,000

users, RedisCluster'sthroughput reached 226 requests per

second, while cache-aside on a single Redis provided 189,

write-through - 168, and without cache - only 35. Thus,

RedisCluster can increase throughput by almost 6.5 times

compared to the baseline scenario. It also demonstrated the

lowest load on the server infrastructure: CPU utilization

dropped to 46% and RAM consumption to 1280 MB, while

in the baseline scenario these figures were 87% and 2450

MB, respectively. This demonstrates the efficiency of

distributing requests between cachenodes and optimizing the

use of hardware resources.

Thus, the study allows us to conclude that Redis, especially

in a cluster configuration, not only improves the

performance of a web application, but also provides

scalability and reduces the load on the main database. The

chosen caching strategy has a significant impact on the

results: cache-aside proved to be more efficient in terms of

performance, while write-through provides better

consistency, but at a certain performance cost. All these

aspects should be taken into account when designing high-

load systems with critical response time and stability

requirements.

The results obtained in the study confirm the effectiveness

of Redis as a caching tool for high-load web applications.

All tested configurations with Redis provided a significant

reduction in response time compared to the baseline

scenario without cache – from 1647 ms to 447 ms under a

load of 10,000 simultaneous users. This effect is consistent

with the findings of Liu et al. (2024) [10], who recorded a

significant performance improvement in response generation

systems based on large language models by pre-caching

frequently used queries in Redis. Their model demonstrates

that Redis can reduce the load on main computing resources

while maintaining the relevance of answers.

In the work of Singh et al. (2022) [20], Redis as a cache and

messagequeue in social media analytics systems provides a

stable response at high request intensity. These findings are

confirmed in our RedisClusterconfiguration, which

supported processing over 220 requests/second without a

significant increase in latency. In a study by Patel et al.

(2021) [14] comparing Redis with Memcached in mobile

cloud systems, the authors substantiate the advantage of

Redis in the context of supporting complex data types and

TTL management. This allows not only caching individual

values, but also structures such as hashes or sets, which was

critical in our prototype when storing aggregated user

sessionobjects.

The use of Redis in high-load information systems is also

described in Ye et al. (2022) [26], where it is used in a

traditional Chinese medicine data management system. The

study demonstrates that Redis reduces latency by up to 40%

by caching the most requestedrecords, similar to our cache-

aside configuration, where the average response time with

10,000 users was only 533 ms. Additionally, Su et al. (2023)
[23] proposed a combined cache strategy that uses Redis

together with filters (e.g., Bloomfilters) to avoid database

accesses. Although this optimization was not implemented

in our testing, the results of the study indicate its potential

effectiveness in systems with uneven load distribution.

Memory optimization in Redis and the role of TTL

management policies are studied in Pan et al. (2022) [13].

Their approach to locality-sensitive memory allocation is

consistent with the results of our RedisCluster scenario,

where the amount of memory used remained within 1280

MB even at maximum load. In addition, Zhang et al. (2023)
[27] analyzed a pattern of caching "hot" data from a relational

database through Redis, which provided a stable reduction

in latency. In our study, this approach allowed us to reduce

the average response time in the cache-aside scenario from

1647 ms (without cache) to 108 ms with 1000 users.

Thus, the results are consistent with existing research,

confirming that Redis, due to its low latency, support for

complex data structures, TTL mechanisms, and the ability to

scale horizontally (via RedisCluster), is one of the most

efficient caching solutions in modern web architectures. Its

advantages are especially noticeable when the load grows,

which makes Redis a key component of building scalable

and high-performance information systems.

Despite the empirical results, the study has a number of

limitations that necessitate a cautious interpretation of the

findings. One of the key limitations is the hardware

configuration of the test environment. All scenarios were

run on a single server with medium computing power (AWS

EC2 t3.medium), which does not fully reflect the real

conditions of productive environments with distributed

computing, autoscaling, and specialized cacheshards. A

similar limitation is also mentioned in SM et al. (2022) [22],

where they demonstrate that caching at the edge device level

has completely different performance indicators due to a

lack of resources and limited data channelbandwidth. In our

case, Redis demonstrated good performance on a single

node, but scaling this architecture in a distributed load

requires a separate empirical study.

The second important limitation is the use of synthetic

traffic generated by the Locust tool. Despite its popularity in

the field of load testing, this tool does not fully reproduce

real user behavior, does not model variable session patterns,

frequency irregularity of requests, or spontaneous load

peaks. As (Seth et al., 2023) [18] note, the limitations of the

simulation approach do not allow adequate reproduction of

the full life cycle of transactions in complex enterprise

systems. In view of this, the response time and throughput

indicators obtained in the study may differslightly from

those that will be recorded in a real production environment.

In addition, the study is limited in terms of processing write

operations. The tested scenarios with Redis did not cover

models with a high update rate or simultaneous changes to

data from multiple sources. As noted by Iyengar et al.

(2023) [7], in systems with generative caching or LLM-

oriented services, it is critical to maintain the sequence of

writes to the cache and main storage, which is not always

possible to achieve when using the cache-aside strategy. In

our study, this strategy showed better performance, but it

does not guarantee data integrity in the event of failures or

transaction contention.

Another limitation is the lack of automatic scaling of Redis

during testing. All scenarios were run with a predefined

topology, without dynamic expansion mechanisms. The

work of Priovolos et al. (2022) [15] emphasizes the need to

implement elasticcache management in distributed systems

where the load changes unpredictably. The absence of this

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

1720

component limits the reliability of the RedisCluster

assessment as a fully scalable solution.

It is also worth noting that the study did not include an

analysis of Redisfault tolerance in the event of individual

node failure. As demonstrated by (Andrade et al.,2022) [1],

even in serverless architectures, the cache system needs

mechanisms for self-healing and load balancing in case of

partialdegradation. In our case, RedisCluster was not

subjected to fault simulation, so the architecture's resilience

to the loss of individual components remained beyond the

scope of the evaluation.

Another limitation is the lack of processing of streaming or

stateful data. The work of Gupta et al. (2023) [6] notes that

for a real Big Data stream, caching should be integrated with

stateful processing and used as part of a delayminimization

strategy. Our testing, on the other hand, covered only REST-

like scenarios where transactions were independent and did

not require long-term context.

In addition, the TTL policy in Redis was setmanually (60

seconds) and did not adapt to the frequency of requests. In

the context of real-world use, this can lead to both

prematurepurging and storing outdated data. The need for

dynamic TTL has already been formulated in Pan et al.

(2021) [13], where they proposed a model of TTL

reconfiguration according to the frequency of accesses,

which could potentially improve cache efficiency in our

case.

Finally, the study did not cover architectures running in

serverless or containerized environments, in particular in

combination with messagebrokers. In Ghosh et al. (2022) [5]

consider the difficulties of caching in serverless models due

to the instability of the runtime environment. Similar

challenges are also analyzed in the study by Wahono et al.

(2023) [28], which shows that in clusteredcontainer systems,

caching efficiency significantly depends on the level of

network synchronization between brokers and caches. These

aspects were left out of our experimental design and need to

be evaluatedseparately in the context of a real cloud

deployment environment.

Thus, while the results of the study are valid for the classic

scenario of a web application with a centralizedcache,

further research should take into account the features of

containerization, streaming processing, fault tolerance,

dynamic scaling, and contextually adaptive TTL control to

ensure that Redis' performance is fully generalized to

complex and realistic environments.

Taking into account the results obtained and their

comparison with existing approaches to caching in high-load

web applications, we can formulate a number of practically

significant conclusions that have direct application in the

architectural design of modern information systems. First of

all, the use of Redis as a caching mechanism is a reasonable

choice for systems characterized by a high frequency of read

operations, a large number of simultaneous users, and

requirements to minimize data access latency. Redis has

been empirically proven to reduce average response time by

more than three times compared to a scenario without

caching, while reducing the load on the main database in

terms of both CPU and RAM. This makes Redis particularly

suitable for use in e-commerce systems, streaming services,

dashboards, and API-oriented environments.

Regarding the choice of caching strategy, the results of the

study indicate the advantage of the cache-aside approach in

typical web scenarios with a predominance of read requests.

This approach ensures minimal delays in data access by

caching only when necessary, without synchronous writing

to the main storage, which increases the overall system

throughput. At the same time, write-through, as a strategy

that guarantees consistency between the cache and the

database through simultaneous writing, has proven to be

somewhatslower, but may be preferable in systems where

transactional integrity is critical or where there is no way to

re-query in the event of a cache failure.

Thus, from a practical point of view, it is advisable to use

cache-aside in most scenarios with read-dominated

operations, as well as in distributed systems with low real-

time consistency requirements. Instead, write-through can

be considered the optimal solution for banking systems,

payment gateways, accounting and registration services,

where losses due to cachemisses are unacceptable, and the

cache must reflect the current state of data without

delayedupdates. Both strategies can be effectively

implemented through Redis, which confirms its flexibility

and practical applicability to a wide range of applications.

Conclusion

The results of the study convincingly demonstrate the

effectiveness of Redis as a caching tool in high-load web

applications. Across all key metrics - response time,

throughput, and database load - Redis implementation has

resulted in a significant improvement in system

performance. In particular, the use of Redis has reduced the

average response time by more than three times, increased

the number of processed requests per second to 226 with

10,000 simultaneous users, and significantly reduced the

consumption of CPU and memory resources of the main

database. This confirms that Redis is the optimal solution

for systems with a high volume of read requests.

The cache-aside strategy proved to be the most effective,

providing minimal latency and high performance by caching

only the necessary data. Its use is advisable in most typical

scenarios where read operations prevail over writing. In

turn, RedisCluster demonstrated the highest stability when

scaling the load, making it a reasonable choice for

distributed systems with a large number of simultaneous

users.

Thus, the study fully achieved its goal and provided

comprehensive answers to the research questions. The

obtained results can be directly used by web system

developers to make a reasonable choice of

cachingconfiguration. Using Redis with cache-aside is the

best option for performance in read-only systems, while

RedisCluster is recommended to maintain scalability under

peakloads.

Further research should focus on evaluating Redis in

combination with distributed databases, comparing it with

alternative cache solutions (in particular, KeyDB), and

analyzing its energy consumption in cloud environments.

This will allow us to better understand the role of Redis in

designing energy-efficient and high-performance next-

generation web architectures.

References

1. Andrade X, Cedeno J, Boza E, Aragon H, Abad C,

Murillo J. Optimizing cloud caches for free: A case for

autonomic systems with a serverless computing

approach. 2019 IEEE 4th International Workshops on

Foundations and Applications of Self* Systems

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

1721

(FAS*W), 2019, 140-145. Doi: 10.1109/FAS-

W.2019.00044

2. Ashokan P, Golli A. Scalable backend solutions for

real-time machine learning applications in web and

mobile platforms. J Appl Sci. 2024; 4(9):8-14.

Retrieved from:

https://sarcouncil.com/2024/09/scalable-backend-

solutions

3. Ćatović A, Čeke D, Buzađija N. A performance

comparison of caching systems in the .NET 6

framework. Elektrotehniski Vestnik. 2023; 90(3):1-8.

Retrieved from:

https://www.researchgate.net/publication/372958856

4. Faridi MT, Singh K, Soni K, Negi S. Memcached vs

Redis caching optimization comparison using machine

learning. ICACRS. 2023; 2:1153-1159. Doi:

10.1109/ICACRS58579.2023.10404339

5. Ghosh BC, Addya SK, Somy NB, Nath SB,

Chakraborty S, Ghosh SK. Caching techniques to

improve latency in serverless architectures. In 2020

International Conference on Communication Systems &

Networks (COMSNETS), 2020, 666-669. Doi:

10.1109/COMSNETS48256.2020.9027427

6. Gupta A, Jain S. Optimizing performance of real-time

big data stateful streaming applications on cloud. 2022

IEEE International Conference on Big Data and Smart

Computing (BigComp), 2022, 1-4. Doi:

10.1109/BigComp54360.2022.00010

7. Iyengar A, Kundu A, Kompella R, Mamidi SN. A

generative caching system for large language models.

arXiv preprint arXiv:2503.17603, 2025. Retrieved

from: https://doi.org/10.48550/arXiv.2503.17603

8. Joshi PK. Redis cache optimization for payment

gateways in the cloud. Int J Emerg Trends Comput Sci

Inf Technol. 2023; 4(2):28-36. Retrieved from:

https://www.researchgate.net/publication/390470192

9. Kumar P. User experience optimization in SAP

SuccessFactors Learning: A caching-driven approach to

perceived performance. IJLRP. 2025; 6(6):1-8. Doi:

10.70528/IJLRP.v6.i6.1585

10. Liu P, Xu Z, Wang C. A Redis Cache-based approach

to high concurrency response in applications of large

language models. In: Yu H, et al. Computer

Applications. CCF NCCA 2024. Communications in

Computer and Information Science. 2024; 2274:107-

119. Doi: https://doi.org/10.1007/978-981-97-9671-7_9

11. Malancioiu D-G, Foldvari H-N, Craciun F. Optimizing

cold start performance in serverless computing

environments. SYNASC. 2024; 26:140-148. Doi:

10.1109/SYNASC65383.2024.00035

12. Pan C, Luo Y, Wang X, Wang ZP. PRedis: penalty and

locality-aware memory allocation in Redis. In:

Proceedings of the ACM Symposium on Cloud

Computing, 2019, 193-205. Doi:

https://doi.org/10.1145/3357223.3362729

13. Pan C, Wang X, Luo Y, Wang Z. Penalty-and locality-

aware memory allocation in Redis using enhanced

AET. ACM Trans Storage (TOS). 2021; 17(2):1-45.

Doi: https://doi.org/10.1145/3447573

14. Patel J, Halabi T. Optimizing the performance of web

applications in mobile cloud computing. 2021 IEEE 6th

International Conference on Smart Cloud (SmartCloud),

2021, 33-37. Doi:

10.1109/SmartCloud52277.2021.00013

15. Priovolos T, Maroulis S, Kalogeraki V. A framework

for managing an Elastic Redis Cache. 2019 38th

Symposium on Reliable Distributed Systems (SRDS),

2019, 363-366. Doi: 10.1109/SRDS47363.2019.00051

16. Ren J, Li A. System design practice for big data. In:

Silicon Valley Python Engineer Interview Guide: Data

Structure, Algorithm, and System Design. Singapore,

Springer Nature Singapore, 2025, 355-388. Doi:

10.1007/978-981-96-3201-5_21

17. Sanka AI, Chowdhury MH, Cheung RCC. Efficient

high-performance FPGA-Redis hybrid NoSQL caching

system for blockchain scalability. Comput Commun.

2021; 169:81-91. Doi: 10.1016/j.comcom.2021.01.017

18. Seth D, Singh A, Panyam S. Distributed caching

challenges and strategies in enterprise applications. Int

Res J Modern Eng Technol Sci. 2023; 6:115-126. Doi:

https://doi.org/10.56726/IRJMETS58564

19. Shethiya AS. Scalability and performance optimization

in web application development. Integr J Sci Technol.

2025; 2(1):1-7. Retrieved from:

https://ijstpublication.com/index.php/ijst/article/view/1

20. Singh RK, Verma HK. Redis-based messaging queue

and cache-enabled parallel processing social media

analytics framework. The Computer Journal. 2022;

65(4):843-857. Doi:

https://doi.org/10.1093/comjnl/bxaa114

21. Sivakumar S. Performance optimization of large

language models (LLMs) in web applications. Int J Adv

Sci Res. 2024; 8:1077-1096. Retrieved from:

https://www.ijtsrd.com/papers/ijtsrd64531.pdf

22. SM S, Bhadauria A, Nandy K, Upadhyay S.

Lightweight data storage and caching solution for

MQTT broker on edge - A case study with SQLite and

Redis. 2024 IEEE 21st International Conference on

Software Architecture Companion (ICSA-C), 2024,

368--372. Doi: 10.1109/ICSA-C63560.2024.00066

23. Su Q, Gao X, Zhang X, Wang Z. A novel cache

strategy leveraging Redis with filters to speed up

queries. In: International Conference on High

Performance Computing and Communication (HPCCE

2021). SPIE, 2022, 150-154. Doi:

https://doi.org/10.1117/12.2628119

24. Wahono BHV, Ijtihadie RM. Caching cluster of

distributed MQTT broker on containerized architecture.

2024 International Conference on Electrical

Engineering and Computer Science (ICECOS), 2024,

349-353. Doi: 10.1109/ICECOS63900.2024.10791203

25. Xu Y, He P, Zhang X, Hu H. Research and

implementation of Redis-based data hot-table caching

mode. ISCAIT. 2025; 4:2172-2175. Doi:

10.1109/ISCAIT64916.2025.11010306

26. Ye Q, Zhang X, Yao L. Performance optimization

method for Traditional Chinese Medicine information

systems in high-concurrency and big data scenarios

based on a comprehensive architecture. In: Proceedings

of the 4th Asia-Pacific Artificial Intelligence and Big

Data Forum, 2024, 144-150. Doi:

https://doi.org/10.1145/3718491.371851

27. Zhang J, Yao Z, Feng J. NCRedis: An NVM-optimized

Redis with memory caching. Lecture Notes in

Computer Science. 2021; 12924:90-104. Doi:

10.1007/978-3-030-86475-0_7

28. Zhang Z, Li X, Zhao Q, Liao X, Zhu Z. A study on

Redis-based aided caching pattern for relational

http://www.multiresearchjournal.com/
https://sarcouncil.com/2024/09/scalable-backend-solutions
https://sarcouncil.com/2024/09/scalable-backend-solutions
https://www.researchgate.net/publication/372958856
https://doi.org/10.48550/arXiv.2503.17603
https://www.researchgate.net/publication/390470192
https://doi.org/10.1007/978-981-97-9671-7_9
https://doi.org/10.1145/3357223.3362729
https://doi.org/10.1145/3447573
https://doi.org/10.56726/IRJMETS58564
https://ijstpublication.com/index.php/ijst/article/view/1
https://doi.org/10.1093/comjnl/bxaa114
https://www.ijtsrd.com/papers/ijtsrd64531.pdf
https://doi.org/10.1117/12.2628119
https://doi.org/10.1145/3718491.371851

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

1722

database hotspot data. 2024 4th International

Conference on Industrial Automation, Robotics and

Control Engineering (IARCE), 2024, 336-342. Doi:

10.1109/IARCE64300.2024.00069

29. Zhou S, Mao Q, Cheng Y, Qi H, Huang Y, Cai P, Zhu

JP. RedTAO: A trillion-edge high-throughput graph

store. Companion of the 2025 International Conference

on Management of Data, 2025, 716-728. Doi:

10.1145/3722212.3724449

30. Zhu Y, Xia T, Zhu T, Zhao Z, Li K, Hu X. RAPO: An

automated performance optimization tool for Redis

clusters in distributed storage metadata management.

IEEE Access. 2025; 13:58060-58074. Doi:

10.1109/ACCESS.2025.3556240

http://www.multiresearchjournal.com/

