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Abstract

Genomic sequence classification plays a key role in 

genomics by enabling the categorization of different DNA 

regions, including promoters, enhancers, coding, and non-

coding sequences. The ability to accurately classify these 

regions is crucial for understanding gene regulation, genome 

organization, and molecular disease mechanisms. In this 

study, we optimized a deep learning-based classifier, a 

convolutional neural network (CNN), improving upon a 

baseline CNN model from prior research. Using benchmark 

datasets for genomic sequence classification, our enhanced 

model demonstrated superior performance in both accuracy 

and F1-score, validating its effectiveness for high-

throughput, sequence-based genomic analysis. 
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Introduction 

The fast-growing discipline of genomics has completely changed how we perceive biological systems, mechanisms of 

diseases, and evolutionary processes. The important tasks in genomics are the annotation and classification of DNA sequences, 

incorporating their functional roles [1, 2]. The four bases found in genomic sequences are adenine (A), cytosine (C), guanine 

(G), and thymine (T), arranged in specific combinations to achieve a certain biological activity [3, 4]. Amongst these huge 

expanses of DNA, some parts are promoters, others enhancers, coding or non-coding exons, non-coding introns, or regulatory 

motifs, which regulate the expression of the gene and its contribution to the life of the cell [5]. Proper identification of these 

sequences forms the basis of understanding gene regulation, the occurrence of mutations associated with disease, and the 

interpretation of genome-wide association studies (GWAS) [6]. 

Conventional methods in the classification of computationally classified genomic sequences depended on alignment-based or 

heuristic algorithms, which despite being highly applicable in small-scale datasets, were not scalable or malleable to the 

changing demands of high-throughput modern data via next-generation sequencing (NGS) [7]. Such techniques were not able to 

identify weak sequence patterns or position-specific interactions, or higher-order interactions, and more complex ways needed 

to be found [8]. Over the past few years, deep learning (DL) has become a revolutionary tool in computational biology. 

Particularly, Convolutional Neural Networks (CNNs) have been shown to be effective in large-scale problems involving 

learning sequential data, like genomics sequences, due to their power to intrinsically learn spatially localized patterns and 

dependencies. 

Gunasekaran et al. utilized CNNs and hybrid models for the classification of DNA sequences [9]. In a related contribution, a 

CNN-based architecture tailored for genome sequence classification, illustrating its adaptability to biomedical applications, 

including COVID-19-related genomic analysis [10]. Helaly et al. conducted a comparative study of CNN-based approaches for 

biological sequence taxonomic classification [11]. Du et al. developed a hybrid DL structure that classified chromosomal DNA. 

They combine CNNs with another neural network called recurrent neural networks (RNNs), which considers both spatial and 

sequential characteristics to classify the chromosomal DNA [12]. Soliman et al. improved CNN architectural layers that led to 

accurate and efficient execution of DNA classification tasks [13]. In the meantime, Shujaat et al. designed pcPromoter-CNN, a 

tailored CNN to identify and classify promoter sites in genomic data, and guided its accuracy toward selecting regulatory 

sequences along with it [14].  

In this project, we focused on the task of genomic sequence classification using deep learning-based methods. Building upon 
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the work of Grešová et al. [15], who introduced a collection 

of benchmark datasets for genomic sequence classification 

along with a baseline CNN model, while the baseline model 

provided a foundation, there remained significant potential 

to improve the predictive accuracy of sequence 

classification models. Thus, the goal of our study was to 

provide and evaluate an optimized CNN-based architecture, 

aimed at outperforming the baseline model in classifying 

benchmark genomic sequences and performance evaluation 

using robust classification metrics. 

 

Materials and Methods: 

Datasets 

In this study publicly, available datasets provided by 

Grešová et al. [15] through the Genomic Benchmark package 

were utilized. This collection provided a curated assortment 

of genomic sequence datasets, each containing DNA 

sequences labeled according to their biological function. 

Datasets had varied sizes, numbers of sequence classes, and 

sequence length distributions. Each dataset included 

thousands of sequences, with class distributions ranging 

from balanced to moderately imbalanced cases. The 

sequences themselves were encoded as strings of nucleotide 

bases. A comprehensive description of all datasets is 

presented in Table 1. For computational purposes, these 

character sequences were converted to integer-encoded 

vectors suitable for deep learning frameworks. 

Table 1: Description of datasets in the genomic benchmark 

package 
 

Datasets 
No. of 

sequences 

No. of 

classes 

Class 

ratio 

Median 

length 

Standard 

deviation 

dummy_mouse_enhan

cers_ensemble 
1210 2 1 2381 984.4 

demo_coding_vs_inte

rgenomic_seqs 
100000 2 1 200 0 

demo_human_or_wor

m 
100000 2 1 200 0 

drosophila_enhancers

_stark 
6914 2 1 2142 285.5 

human_enhancers_co

hn 
27791 2 1 500 0 

human_enhancers_ens

emble 
154842 2 1 269 122.6 

human_nontata_prom

oters 
36131 2 1.2 251 0 

 

Model architecture and implementation 

Optimized CNN architecture specifically tailored for the 

classification of genomic sequence data (Fig 1). Firstly, an 

input layer that receives integer-encoded DNA sequences, 

where each nucleotide base is converted into a numerical 

index. Then, these indices were then sent to an embedding 

layer, which is an operation designed to convert a discrete 

value input to dense, continuous vectors. This will give the 

model the ability to capture meaningful patterns and 

contextual relationships in the sequences. 

 
(a) (b) 

 
 

Fig 1: (a) Baseline CNN (b) Optimized CNN: Depthwise separable convolutions, global pooling instead of flattening information, skip 

connections preserve early features, adaptive pooling maintains key patterns, optimized classifier: bottleneck architecture (128 → 64 → 

output) & strategic dropout 

 

The embedded representations are then processed through a 

series of three one-dimensional convolutional blocks, each 

designed to extract increasingly complex sequence features. 

The first convolutional block comprises a Conv1D layer that 

has 32 filters and a kernel size of 3, followed by a batch 

normalization layer to stabilize activations, a Rectified 

Linear Unit (ReLU) activation function introducing non-

linearity, and a max-pooling layer that aids in decreasing the 

spatial characteristics of the feature maps. 

 
Table 2: Model architecture refinements: From baseline CNN to optimized version 

 

Feature Original CNN FastAccurateCNN Importance 

Convolution Type Standard 1D Convs Depthwise Separable Convs 3-4× faster with similar accuracy 

Channel Progression 100→16→8→4 100→32→64→128 Increasing channels preserve more features as depth grows 

Kernel Size Large (k=8) Optimal (k=3) Better local feature capture 

Skip Connections None Cross-block feature reuse Prevents information loss 

Pooling Fixed MaxPooling AdaptiveAvgPool+ Maxpool Handles variable-length inputs better 

Regularization Only BatchNorm LayerNorm + BatchNorm 
LayerNorm handles variable-length sequences better & 

BatchNorm stabilizes training. 

Dropout None p=0.3 in classifier Prevents overfitting 
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The second block had the same structure with an increased 

number of filters set to 64, while the third block further 

increases the filter count to 128 and replaces max-pooling 

with an adaptive average pooling layer. This adaptive 

pooling operation reduces the feature map to a fixed-size 

vector, irreventive of sequence length of the input, thus 

being compatible with the subsequent classifier stage. 

Following feature extraction, the model includes a fully 

connected classifier composed of two linear layers. The first 

linear layer utilizes the ReLU activation function to 

minimize the dimensionality from 128 to 64, maintaining 

the non-linearity and dropout layer with a dropout 

probability of 0.3 to reduce overfitting. The final linear layer 

maps the 64-dimensional vector to the number of output 

classes, using a sigmoid activation function for binary 

classification tasks or leaving the raw logits for multi-class 

problems. Table 2 shows the model overall architecture 

refinements.  

 
Table 3: Key training modifications from baseline to optimized 

model 
 

Change Basline Optimized Benefit 

Optimizer Adam AdamW 
Better Weight decay 

handling 

LR Scheduler None OneCycleR Faster convergence 

Loss Scaling Basic 
Gradient 

Clipping 
More stable training 

 

The training procedure involved dividing 80% of each 

dataset for training and 20% for testing, ensuring 

reproducibility through a random split using the 

train_test_split() function. The model was trained in mini-

batches, performing forward passes to generate predictions, 

computing the loss using either binary cross-entropy with 

logits loss or cross-entropy loss depending on the task, and 

backpropagating gradients to update the model parameters. 

The key training modifications are shown in Table 3. 

Furthermore, the AdamW optimizer was applied for its 

robust convergence properties, complemented by a 

OneCycleLR learning rate scheduler that dynamically 

adjusted learning rates within each epoch for improved 

training stability and speed. Training performance was 

tracked in terms of cumulative loss and accuracy, with 

metrics recorded at the end of each epoch. After training 

completion, the model’s generalization performance was 

assessed on the test set, and final accuracy and F1-score 

metrics were computed, with the latter providing an 

especially important measure in cases of class imbalance. 

 

Results 

Our results showed significant improvements in 

classification performance compared to the baseline CNN. 

In Fig 2a, the accuracy scores of both models across 

multiple genomic datasets were demonstrated. Optimized 

CNN consistently outperformed the baseline CNN in every 

dataset evaluated. The enhancement in accuracy was 

between small increases in balanced sets of data and 

significant steps in sets of data with increased sequence 

diversity and complexity. This indicated that this 

optimization is better at generalising sequence patterns, even 

in challenging classification tasks. 
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Fig 2: (a) Shows model accuracy across datasets, whereas (b) shows model F1 scores across datasets 

 

F1-score metrics evaluation is presented in Fig 2b; datasets 

exhibited moderate class imbalance; the F1 score provided a 

more sensitive measure of model effectiveness by taking 

into consideration both false positives and false negatives. 

Our model achieved demonstrates higher F1-scores across 

all datasets, which shows its superior ability to accurately 

predict minority classes while maintaining high precision 

and recall.  

Table 4 shows performance scores for both models across 

several genomic sequence datasets. Datasets with more 

complex sequence patterns or imbalanced class distributions 

showed more improvement, where the enhanced 

architecture’s capacity to extract richer sequence features 

and its regularization techniques (like dropout and adaptive 

pooling) resulted in better generalization on unseen test data.  

This improvement is credited to architectural advancement 

which includes the use of depthwise separable convolutions, 

the use of batch normalization to guarantee stability of 

activation, adaptive average pooling to handle the various 

length of sequences, and dropout regularization to overcome 

overfitting. 
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Table 4: Comparison of classification performance between 

baseline CNN and optimized CNN across datasets 
 

Datasets 

Baseline CNN Optimized CNN 

Accuracy 
F1 

score 
Accuracy 

F1 

score 

dummy_mouse_enhancers_ens

emble 
69 70.4 79.3 77.8 

demo_coding_vs_intergenomi

c_seqs 
87.6 86.8 88.8 88.4 

demo_human_or_worm 93 92.8 95 94.9 

drosophila_enhancers_stark 58.6 44.5 68.6 58.9 

human_enhancers_cohn 69.5 67.1 71.8 72.4 

human_enhancers_ensemble 68.9 56.5 82.1 81.65 

human_nontata_promoters 84.6 83.7 84.7 83 

 

These results demonstrate that careful refinements in 

architecture and training procedure protocols can lead to 

deep learning models with significantly better predictive 

ability in the field of genomic sequence classification. 

 

Conclusion 

This study has shown that deep learning-driven genomic 

sequence classification can be enhanced considerably by the 

optimization of CNN architectures and training procedures. 

The given proposed optimized model was superior to a 

baseline CNN in its accuracy and F1-scores among several 

genome benchmark datasets. The improvements were 

mainly due to key additions such as multiple convolutional 

layers, batch normalizations, adaptive pooling, and AdamW 

optimizer with OneCycleLR scheduler. For future work, 

extending the model to multi-label sequence classification 

and integrating attention mechanisms could enhance its 

capacity to capture long-range dependencies in DNA 

sequences. Additionally, to extend the applicability of the 

model by testing it on real-world genomic data, and even 

with epigenetic annotations. This paper reports on the 

potential of optimization in DL in the field of computational 

genomics, as well as a practical and scalable framework that 

can be applied in the future to genome annotation and 

precision medicine. 
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