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Abstract 

This paper demonstrates the existence and uniqueness of a 

local weak solution for the mixed problem (P). This problem 

is described in Equation (1). To assess the existence of 

global solutions, we used the Faedo-Galerkin method, the 

Aubin-Lions theorem of compactness, and important 

inequalities of functional analysis. Additionally, with 

respect to the uniqueness of the global solutions, we used 

the energy method due to the solution's regularity. We also 

used some inequalities of functional analysis. We use 

Nakao's lemma and some functional analysis inequalities to 

treat the asymptotic behavior of the problem. 
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1. Introduction 

In this work, we study the existence and uniqueness of the decay of global solutions for the mixed problem, which is 

represented by (P). 

 

  (1) 

 

Here,  denotes an open limited of , where , and  has a smooth boundary .  is a positive 

function with additional hypothesis, and . For each real fixed number, however arbitrary,   denotes the cylinder 

 with the lateral boundary . Furthermore,  is the self-adjoint non limited operator that is 

defined by the set of elements , where 

 

     (2) 

 

2. Notation and hypothesis 

In what follows, we use to denote the inner product and the norm in  and , respectively. Considering the 

space  that is provided by the norm of gradient, if , then . Therefore, we assume the 

following hypotheses about  and . 

 

 
 (3) 

  

 

3. Principal results 

Consider the functions  and  that satisfy hypotheses . If ,  and 

, then we have ,  and a single vector function  such that 
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 (4) 

;  

 
 

Comments 

The existence of global solutions will be proven using the Faedo-Galerkin method, the compactness theorem of Aubin-Lions, 

and important inequalities of functional analysis. Further, the uniqueness of the global solutions will be proved using the 

energy method due the regularity of the weak solution and inequalities of functional analysis (Frota and Larkin, 1997) [6]. 

Meanwhile, with respect to the asymptotic behavior, we will use Nakao’s method (Nakao, 2025)[5].  

 

Approximate problem 

We consider that  is a complete orthonormal system of  that is constituted by the eigenvector operator of  and 

 is the corresponding sequence of eigenvalues. For each m=1,2,3,...,  is the subspace that is 

created by . 

The approximate problem associated with (P) consists of finding a solution in the form 

 

   

  (5) 

 and the class are determined to satisfy the following system: 

 

 (6) 

 

 and  

 

Here,  and  are the approaches of  and , respectively. Thus, here,  and . 

Therefore, it is possible to approach finite linear combinations of , and there are constants  and  where 

 such that 

 

 

 

 
 

 (7) 

 

Then,  and . Therefore, since there is a single linear combination of vectors , it follows that 

 

,  ( 1, 2,...,m) (8) 

 

Substituting  in (6) and using the fact of that  is a complete orthonormal system in , the following equation 

is obtained: 

 

 
 (9) 

 

We make some calculations and transform the system (PA) in one system  as follows. 

 

  (10) 
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Matrix form 

 

To simplify the system in (10), we write it in the matrix form using  and 

 

 (11) 

We then obtained  using 

 

 (12) 

 

Thus, 

 

  (13) 

 

We reorganize it into this form: 

 

 ,  (14) 

 

We obtain the form 

 

 (15) 

 

Thus, the system  can be rewritten in following form: 

 

 (16) 

 

Next, 

 

, , ,  (17)  

 

We verify that the above system satisfies the conditions of Caratheodory’s theorem (Brézis, 1984)[1]. Therefore, it has a 

solution  that is defined by . 

 

The a priori estimate implies that  is defined in the interval . 

 

A priori estimate 

First Estimate 

Considering v = 2um’ in the system , we obtain the following result: 

 

  (18) 

  

By applying the Gronwall’s inequality (Lions, 1969)[2], 

 

 (19) 

 

It follows that 

 

 , ,  (20) 
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Applying Caratheodory’s theorem can extend the solution  to the interval . Thus, the sequences can be expressed 

as follows: 

 

is bounded in  (21) 

 

is bounded in  (22) 

 

Second Estimate 

Consider  in the system , we obtain the following result: 

 

 (23) 

 

Here, 

 

 (24) 

 

The inequality (23) can be rewritten in the following form: 

 

 (25) 

 

Using Gronwall’s inequality, it follows that 

 

 where,  (26) 

  

We observe that  is continuous in the interval . Then,  exists such that  for all m and all . 

From the inequality (23), it follows that 

 

 (27) 

 

 (28) 

 

Thus, 

 

  is bounded in  (29) 

   

  is bounded in  (30) 

  

Following the first and second estimate  and , we obtain that  is bounded in 

 

 (31) 

 

Third Estimate 

Considering  in the system , using the Cauchy-Schwartz inequalities and the elementary inequality Rivera, 

2004) [3], and integrating from  to , we obtain the following: 

 

 (32) 

 

It follows that 

 

 (33) 

 

Therefore, 

 

  is bounded in  (34) 

 

Passage to the limit 

The previous estimates can be expressed as follows. 
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is bounded in  (35) 

 

is bounded in  (36) 

 

is bounded in  (37) 

 

Using the corollary of Banach-Alaoglu-Bourbaki (Carrier, 1945)[4] and observing that  is Hilbert, the following 

is obtained: 

 

in , weak  (38) 

  
 in , weak (39) 

  
, weak (40) 

 

We also have 

 

in , weak  (41) 

 

in , weak  (42) 

 

Conversely, we can write 

 

 in , weak (43) 

 
 , weak (44) 

 

Convergences of  and  

According to the Aubin-Lions lemma on compactness (Hosoya and Yamada, 1991)[7], taking  and 

, implies the following: 

 

 strong in  (45) 

 

Using some results of functional analysis leads to the following convergence: 

 

, in  (46) 

 

Hence, it can be concluded that 

 

 in  (47) 

 

For the convergence of another nonlinear term, knowing that , we have 

 

 in  (48) 

 

By multiplying  by  and integrating 0 to T0 as , according to previous convergences, when 

, we obtain 

 

 (49) 

 

 (50) 

 

 (51) 

 

 (52) 
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Thus, by taking the limit when , using , and holding m arbitrary fixed, we can express the following: 

 

 (53) 

 

Knowing that the union of Vm is dense in  and the above equality above is valid when  and , it follows 

that the equality is equal to . Furthermore, the set  is dense in . Then,  

 

 (54) 

 

Finally, 

 

. Then,  (55) 

 

Therefore, 

 

 (56) 

 

This completes the proof. 

 

Initial conditions 

This section proves that  and  through the following demonstration. From previous results, we know the 

following: 

 

 (57) 

 

 (58) 

 

 (59) 

 

Using the results of the regularity, it follows that 

 

 (60) 

 

Thus, it can be concluded that . Therefore, it makes sense to calculate  and . Consider 

, ,  and . First, we calculate . We know that 

 

 in  (61) 

 

and 

 

,  (62) 

 

We take  with  and  and integrate 0 to T0. After integrating it by parts, we obtain 

 

 (63) 

 

From the convergence in (38), the following result is obtained: 

 

, and  (64) 

 

Lebesgue's dominated convergence is used to obtain the following: 

 

 (65) 

 

It follows that 

 

in   (66) 
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Then, 

 

,  (67) 

 

Therefore, 

 

 (68) 

 

To show that , we us the convergences in (39)–(40). Analogously, we obtain 

 

 (69) 

 

Therefore, 

 

 (70) 

 

In the next section, we will prove the uniqueness of solution to achieve our goal. 

 

4. Uniqueness of solution 

Theorem 1 (Uniqueness): The problem (P) has a unique solution 

Suppose that u and w are two vector functions that are defined using  in  such that they are solutions of (P) 

according to the conditions of the main Theorem 1. Considering , we obtain the following: 

 

 (71) 

 

 (72) 

 

 (73) 

 

Considering that  are solutions to the problem (P), then 

 

 (74) 

 

 (75) 

 

Adding and subtracting the terms  and  in (74)–(75) implies that 

 

 

 (76) 

 

Because , using Mean Value Theorem, according to the regularity of the solution that is obtained, and associating 

with  in  in (76), the following is defined: 

 

 
 (77) 

 

By Using the inequality of Cauchy - Schwarz in the second part of (77), we obtain 

 

 

 (78) 

 

We note that 

 

 

 (79) 

 

Substituting (79) in (78) and using the definition , we obtain 
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 (80) 

 

Where 

 

  and  (81) 

 

By applying the elementary inequality  and using  in the second part of (80), we obtain 

 

 

 (82) 

 

We again use the Cauchy-Schwartz inequality in (82) and observe the limitations of the terms for 

 

 and  (83) 

 

Where 

 
 (84) 

 
 

Hence, 

 

 (85) 

 

By integrating the inequality in (85) from 0 to t and using the hypothesis of , the following is obtained. 

 

 (86) 

 

By substituting  into inequality (86) and making some algebraic manipulations, we obtain the 

following: 

 

  (87) 

 

Conversely, using Gronwall’s inequality in (87), we deduce that 

 

  (88) 

 

This implies that , and thus . Therefore, 

 

,  (89) 

 

5. Exponential decay 

Theorem 2 (Exponential decay) 

The solution of the problem (P) decays exponentially when . Then, there are positive constants and  such 

that 

 

, where  (90) 

 

Where E (t) is the energy associated with the problem (P) if u  is a global solution of the problem (P). 

 

5. 1. 1. Demonstration: 

We compose the first equation of the problem (P) that is shown above using . 

 

 (91) 
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Now, if we consider 

 

 (92) 

 

it follows that 

 

 (93) 

 

Finally, 

 

 (94) 

 

This means that the energy of the problem (P) is decreasing. By integrating (94) from 0 to t, the following equation is obtained: 

 

 (95) 

 

By integrating (94) from t1 to t2 with 0 < t1 < t2, the following equation is obtained: 

 

  (96) 

 

Therefore, 

 

 (97) 

 

Using the mean value theorem for integrals, we can observe that there exists two points 

 

 and  (98) 

 

such that 

 

 (99) 

 

 and 

 

 (100) 

 

It follows that 

 

,  (101) 

 

By using  in the first equation of the problem (P) and integrating from  to , it gives the following: 

 

  (102) 

 

By using the Cauchy-Schwartz and Elementary inequalities, it follows that 

 

 

( ) ( )  
2 2

1 1

2 2

1 1

2 2 2 2

1 1 2
1

2 2

( ) ( ) ( ) ( ) sup ( ) ( ) ( )

1 1
( ) ( )

2 2

t t

t s t
t t

t t

t t

M u t u t ds M u t u t ds ess u s u t u t

u t ds u t ds 

  +

 +    + + 

+ +

 

 
 (103) 

 

Noting the immersion  and , it follows that 

 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

234 

 

( ) ( )
2 2

1 1

2 2

1 1

2 2 2 2

1 1
1

2 2

1

( ) ( ) ( ) ( ) 4 sup ( ) ( )

1 1
( ) ( )

2 2

t t

t s tt t

t t

t t

M u t u t ds M u t u t ds c ess u s F t

c u t ds u t ds



 

  +

+    + 

 
+ + 

 

 

 
 (104) 

             

By using the hypothesis about  and  and grouping the terms, we obtain the following: 

 
2 2 2

1 1 1

2 2 2

0 1 1 1
1

1 1
( ) ( ) 4 sup ( ) ( ) ( )

2 2

t t t

t s tt t t

m u t ds m u t ds c ess u s F t c u t ds  
  +

   
+ −    +    

   
  

 (105) 

 

By using , we have 

 
2

1

2 2 2

1 1
1

1
( ) ( ) 4 sup ( ) ( ) ( )

2

t

t s t
t

k u t u t ds c ess u s F t c F t 
  +

  +    +      


 (106) 

 

Here, . By again using the immersion and making some algebraic manipulations, we 

can obtain 

 

1

1
2

1

sup ( ) ( )

t

t s t
t

ess E s E t u ds
+



  +

 + 
 (107) 

 

Then, 

 

2

6
1 11

1
sup ( ) ( ) sup ( )

t s t t s t

ess E s c F t ress E s
m  +   +

 +

 (108) 

 

Finally, it is concluded that 

 

2

6
11

1
1 sup ( ) ( )

t s t

ess E s c F t
m   +

 
−  

  , where   (109) 

 

Conversely, we can observe that 

 

( )( )2

7 7
1

sup ( ) ( ) ( ) 1
t s t

ess E s c F t c E t E t
  +

 = − +
 (110) 

 

Where 

 

 (111) 

 

Using Nakao's method, we conclude the following: 

 

,  (112) 

 

where  and are positive constants. 

 

6. Conclusion 

The presented methodology was able to propose a global solution for the Non-Linear Kirchhoff – Carrier Type Equation with 

Dissipation. 
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