

708

Int. j. adv. multidisc. res. stud. 2024; 4(5):708-714

A Comparative Study on Input Format for Convolutional Neural Network

based Head Detection

1 Panca Mudjirahardjo, 2 Aqil Gama Rahmansyah, 3 Alya Shafa Dianti
1, 2 Department of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya, Malang, Indonesia

3 Department of Statistics, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, Indonesia

Corresponding Author: Panca Mudjirahardjo

Abstract

In this research, we study and evaluate the performance of

CNN based head detection with various input image. We

evaluate grayscale, CLAHE and saliency map format as

inputs to our CNN model. We use INRIA dataset for

training and testing data. For training data, we use image

size of 30×20 pixels. The experimental result shows saliency

map is a good input and adam is a good optimizer for our

CNN model. The experiment is conducted using

programming language python and openCV library.

Keywords: CLAHE, Saliency Map, CNN, Head Detection, Optimizer

1. Introduction

Head detection is one of task in computer vision. The objective of head detection is for a smart monitoring system, both

indoors and outdoors. Head detection and orientation estimation are a vital component in the intention recognition of

pedestrians. This research still has challenges, due to the complexity of human poses, background, lighting conditions,

occlusions and camera view-points. Head detection may be more demanding than face recognition and pedestrian detection in

the scenarios where a face turns away or body parts are occluded in the view of a sensor, but locating people is needed.

Bin Li et al [1] captured the scene and detected human head from top view. They proposed a novel people counting method

based on head detection and tracking to evaluate the number of people who move under an over-head camera. There were four

main parts in the proposed method: foreground extraction, head detection, head tracking, and crossing-line judgment. The

proposed method first utilized an effective foreground extraction method to obtain foreground regions of moving people, and

some morphological operations were employed to optimize the foreground regions. Then it exploited a LBP feature based

Adaboost classifier for head detection in the optimized foreground regions. After head detection was performed, the candidate

head object was tracked by a local head tracking method based on Meanshift algorithm. Based on head tracking, the method

finally used crossing-line judgment to determine whether the candidate head object will be counted or not. Experiments show

that their method can obtain promising people counting accuracy about 96% and acceptable computation speed under different

circumstances.

Eike Rehder, et al. [2] proposed a novel framework to detect highly occluded pedestrians and estimate their head orientation.

Detection was performed for pedestrian’s heads only. For this they employed a part-based classifier with HOG/SVM

combinations. Head orientations were estimated using discrete orientation classifiers and LBP features. Results were improved

by leveraging orientation estimation for head and torso as well as motion information. The orientation estimation was

integrated over time using a Hidden Markov Model. From the discrete model they obtained a continuous head orientation.

They evaluated their approach on image sequences with ground truth orientation measurements.

Tuan-Hung Vu, et al. [3] focused on detecting human heads in natural scenes. Starting from the recent local R-CNN object

detector, they extended it with two types of contextual cues. First, they leveraged person-scene relations and proposed a Global

CNN model trained to predict positions and scales of heads directly from the full image. Second, they explicitly modeled

pairwise relations among objects and trained a Pairwise CNN model using a structured-output surrogate loss. The Local,

Global and Pairwise models were combined into a joint CNN framework. To train and test their full model, they introduced a

large dataset composed of 369, 846 human heads annotated in 224, 740 movie frames. They evaluated their method and

Received: 21-08-2024

Accepted: 01-10-2024

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

709

demonstrated improvements of person head detection

against several recent baselines in three datasets.

Siyuan Chen, et al. [4] introduced an efficient head detection

approach for single depth images at low computational

expense. First, a novel head descriptor was developed and

used to classify pixels as head or non-head. They used depth

values to guide each window size, to eliminate false

positives of head centers, and to cluster head pixels, which

significantly reduced the computation costs of searching for

appropriate parameters. High head detection performance

were achieved in experiments – 90% accuracy for our

dataset containing heads with different body postures, head

poses, and distances to a Kinect2 sensor, and above 70%

precision on a public dataset composed of a few daily

activities, which is higher than using a head-shoulder

detector with HOG feature for depth images.

Dexhi Peng, et al. [5] presented a method that can accurately

detect heads especially small heads under the indoor scene.

To achieve this, they proposed a novel method, Feature

Refine Net (FRN), and a cascaded multi-scale architecture.

FRN exploits the multi-scale hierarchical features created by

deep convolutional neural networks. The proposed channel

weighting method enables FRN to make use of features

alternatively and effectively. To improve the performance of

small head detection, they proposed a cascaded multi-scale

architecture which has two detectors. One called global

detector was responsible for detecting large objects and

acquiring the global distribution information. The other

called local detector was designed for small objects

detection and made use of the information provided by

global detector. Due to the lack of head detection datasets,

they had collected and labeled a new large dataset named

SCUT-HEAD which includes 4405 images with 111251

heads annotated. Experiments show that their method had

achieved state-of-the-art performance on SCUT-HEAD.

Muhammad Saqib, et al. [6] detected human heads in natural

scenes acquired from a publicly available dataset of

Hollywood movies. In this work, we had used state-of-the-

art object detectors based on deep convolutional neural

networks. These object detectors include region-based

convolutional neural networks using region proposals for

detections. Also, object detectors that detect objects in the

single-shot by looking at the image only once for detections.

They had used transfer learning for fine-tuning the network

already trained on a massive amount of data. During the

fine-tuning process, the models having high mean Average

Precision (mAP) were used for evaluation of the test dataset.

Yijing Wang, et al. [7] developed a simple effective proposal-

based human head and body detection framework in

crowded scenes. Human heads were too small for detectors

to locate and human bodies were frequently occluded in the

crowds, which required more robust location capability of

detectors. To tackle the issues above, they proposed a head-

body correlation module to utilize the location prior

knowledge of human body and human head. Compared with

Faster R-CNN, their approach can improve the Average

Precision (AP) gains for human body and head detection by

2.15% and 2.52% on the challenging CrowdHuman dataset.

Xiyang Dai, et al. [8] presented a novel dynamic head

framework to unify object detection heads with attentions.

By coherently combining multiple self-attention

mechanisms between feature levels for scale awareness,

among spatial locations for spatial-awareness, and within

output channels for task-awareness, the proposed approach

significantly improved the representation ability of object

detection heads without any computational overhead.

Further experiments demonstrated that the effectiveness and

efficiency of the proposed dynamic head on the COCO

benchmark. With a standard ResNeXt-101- DCN backbone,

they largely improved the performance over popular object

detectors and achieved a new state-of-the-art at 54.0 AP.

Furthermore, with latest transformer backbone and extra

data, they can push current best COCO result to a new

record at 60.6 AP.

2. The Proposed Study

In this section, we briefly explain the proposed study to

evaluate the performance of various input format for

convolutional neural network. We evaluate grayscale

format, Contrast Limited Adaptive Histogram Equalization

(CLAHE) format and saliency map as an input image. The

study method is shown in Fig 1. Our architecture in this

study use the architecture in Fig 2. The architecture has been

evaluated in [11-12].

Fig 1: The proposed method of this study

Fig 2: The CNN model we used [12]

3. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of

artificial neural network designed primarily for processing

structured grid data, such as images. Here's a brief overview

of its key components and how it works:

Key Components

1. Convolutional Layers: These layers apply

convolutional filters (kernels) to the input data. Each

filter detects specific features such as edges or textures.

As the filter slides over the input image, it produces

feature maps that represent the presence of these

features.

2. Activation Functions: After convolution, activation

functions like ReLU (Rectified Linear Unit) introduce

non-linearity to the model, helping it learn more

complex patterns.

3. Pooling Layers: These layers reduce the spatial

dimensions (width and height) of the feature maps

while retaining the most important information.

Common pooling operations include max pooling

(taking the maximum value in a region) and average

pooling.

4. Fully Connected Layers: After several convolutional

and pooling layers, the network typically includes one

or more fully connected layers that perform

classification or regression based on the extracted

features.

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

710

5. Dropout Layers: To prevent overfitting, dropout layers

randomly "drop" (set to zero) a fraction of the neurons

during training, which helps the network generalize

better to new, unseen data.

How It Works

1. Feature Extraction: CNNs automatically learn and

extract features from the input data. For an image, this

means learning to detect edges, textures, and more

complex structures as you go deeper into the network.

2. Hierarchical Learning: Lower layers in the network

might learn simple features like edges, while higher

layers combine these features to detect more complex

structures, such as shapes or objects.

3. Classification/Regression: After extracting features,

CNNs use fully connected layers to classify the image

into categories or predict values if used for regression

tasks.

Applications

CNNs are widely used in various fields:

▪ Image Recognition: Identifying objects, people, or

scenes in images.

▪ Object Detection: Locating objects within an image

and classifying them.

▪ Semantic Segmentation: Assigning a class to each

pixel in an image.

▪ Video Analysis: Recognizing actions or events in video

frames.

▪ Medical Imaging: Analyzing medical scans for disease

detection or diagnosis.

4. Training phase

The training phase in machine learning is a crucial part of

developing a model that can make accurate predictions or

decisions based on data. Here's a detailed look at what

happens during the training phase:

Steps in the Training Phase

1. Data Preparation

▪ Data Collection: Gather the dataset that will be

used for training. This could be from various

sources like databases, web scraping, or existing

datasets.

▪ Data Cleaning: Handle missing values, remove

duplicates, and correct errors to ensure the data is

of high quality.

▪ Data Splitting: Divide the dataset into training,

validation, and test sets. Typically, the training set

is used to train the model, the validation set is used

to tune hyperparameters, and the test set is used to

evaluate the model's performance.

2. Model Initialization

▪ Choosing a Model: Select an appropriate model or

algorithm based on the problem type (e.g., linear

regression, decision tree, neural network).

▪ Initializing Parameters: Set initial values for the

model's parameters. For complex models like

neural networks, these are often initialized

randomly.

3. Forward Pass

▪ Input Data: Feed a batch of training data into the

model.

▪ Prediction: The model processes the input data

through its layers (in the case of neural networks)

and generates predictions or outputs.

4. Loss Calculation

▪ Loss Function: Compute the loss (or error) by

comparing the model's predictions with the actual

target values using a loss function (e.g., mean

squared error, cross-entropy loss).

▪ Objective: The goal is to minimize this loss

function.

5. Backward Pass (Backpropagation in Neural Networks)

▪ Gradient Calculation: Calculate the gradients of

the loss function with respect to each model

parameter using techniques like gradient descent.

▪ Parameter Update: Adjust the model parameters

based on the gradients to reduce the loss. This

involves using an optimizer (e.g., SGD, Adam) to

apply updates.

6. Iteration

▪ Epochs: Repeat the forward pass, loss calculation,

and backward pass for multiple epochs (iterations

over the entire training dataset).

▪ Mini-batch Processing: For large datasets, data is

often processed in smaller mini-batches rather than

all at once.

7. Validation

▪ Hyperparameter Tuning: Use the validation set

to tune hyperparameters (e.g., learning rate, number

of layers) and make adjustments to improve

performance.

▪ Model Evaluation: Periodically evaluate the

model on the validation set to monitor its

performance and ensure it is not overfitting.

8. Regularization

▪ Techniques: Apply regularization techniques (e.g.,

dropout, L2 regularization) to prevent overfitting

and improve generalization.

▪ Early Stopping: Monitor validation performance

and stop training if performance on the validation

set starts to degrade.

9. Model Saving

▪ Checkpointing: Save the model parameters and

state at different points during training, especially

after significant improvements.

▪ Best Model: Save the best performing model based

on validation metrics.

Key Concepts

▪ Overfitting: The model performs well on training data

but poorly on validation/test data. This often means the

model has learned noise in the training data.

▪ Underfitting: The model performs poorly on both

training and validation data, indicating it is too simple

to capture the underlying patterns in the data.

▪ Learning Rate: Determines the size of the steps taken

during parameter updates. Too high a learning rate can

cause the model to overshoot minima, while too low a

rate can lead to slow convergence.

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

711

▪ Epochs: The number of times the entire training dataset

is passed through the model. More epochs can lead to

better training, but also increase the risk of overfitting.

▪ Batch Size: The number of training examples used in

one iteration of model updates. A larger batch size can

stabilize training but requires more memory.

The training phase is where a machine learning model learns

from data by adjusting its parameters to minimize a loss

function. It involves data preparation, model initialization,

forward and backward passes, and iteration with validation.

Regularization techniques are used to enhance the model's

ability to generalize to new, unseen data. Proper

management of this phase is essential for developing a

robust and effective machine learning model.

In this study, we have 2 classes and put the training data in

directory:

D:\Riset\[1] DATA_image\INRIA - ku\datasets_2000x2\

 Head_OK\

 head (1).png

 head (2).png

 Head_NG

 neg (1).png

 neg (2).png

Program-1:

print('CNN training 30x20 Grayscale, part 3 ..\n'*5)

print("ARZETI_Doyoubi,24.08.2024; 08:20")

print("Panca" +

 " Mudjirahardjo")

print("")

print("====================================")

print('')

optim = input('Optimizer: (1)ADAM, (2)RMSprop : ')

print('')

ep = input('The number of epoch: ')

ep = int(ep)

--

import numpy as np

import os

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

import tensorflow as tf

from tensorflow.keras import layers, models

--

def model():

 model = models.Sequential()

 model.add(layers.Conv2D(64, (3, 3), activation='relu',

input_shape=(30, 20, 1)))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Conv2D(32, (3, 3), activation='relu'))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Flatten())

 model.add(layers.Dense(64, activation='relu'))

 model.add(layers.Dense(64, activation='relu'))

 model.add(layers.Dense(num_classes))

 print('')

 model.summary()

 return model

--

data_dir = "D:\Riset\[1] DATA_image\INRIA -

ku\datasets_2000x2"

train_ds = tf.keras.utils.image_dataset_from_directory(

 data_dir,

 validation_split=0.25,

 subset="training",

 seed=123,

 color_mode="grayscale",

 image_size=(30, 20),

 batch_size=20)

val_ds = tf.keras.utils.image_dataset_from_directory(

 data_dir,

 validation_split=0.25,

 subset="validation",

 seed=123,

 color_mode="grayscale",

 image_size=(30, 20),

 batch_size=20)

class_names = train_ds.class_names

print(class_names)

for image_batch, labels_batch in train_ds:

 print(image_batch.shape)

 print(labels_batch.shape)

 break

AUTOTUNE = tf.data.AUTOTUNE

train_ds =

train_ds.cache().prefetch(buffer_size=AUTOTUNE)

val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

num_classes = 2

--

model.compile(

 optimizer=optim,

 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_l

ogits=True),

 metrics=['accuracy'])

history = model.fit(

 train_ds,

 validation_data=val_ds,

 epochs=ep

)

plt.figure('Model: ' +modelKE +' , optimizer: ' +optim)

plt.plot(history.history['accuracy'], label='train_accuracy')

plt.plot(history.history['val_accuracy'], label =

'val_accuracy')

plt.xlabel('Epoch')

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

712

plt.ylabel('Accuracy')

plt.ylim([0.5, 1])

plt.legend(loc='lower right')

plt.show()

print('')

print(' ----- model evaluate ---- ')

test_loss, test_acc = model.evaluate(val_ds) # ,

verbose=1

model.save('D:\Program\python 3.11.5\Training

model\my_model.keras')

5. Head Detection

Program-2:

print('CNN head detection, part 1 ..\n'*5)

print("ARZETI_Nichiyoubi,18.08.2024; 12:43")

print("Panca" +

 " Mudjirahardjo")

print("")

print("====================================")

print('')

print('-- import library ---')

print('')

import numpy as np

import os

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

import cv2 as cv

import tensorflow as tf

from tensorflow.keras import models

from keras.preprocessing import image

--

oriIMG = cv.imread("D:\Program\output

image\person_1.jpg")

h,w,c = oriIMG.shape

print(oriIMG.shape)

--

print('')

print('-- loading model ---')

model = models.load_model('D:\Program\python

3.11.5\Training model\myModel.keras')

print('')

--

for r in range(0,h,15):

 for c in range(0,w,10):

 cropped_image = oriIMG[r:r+30,c:c+20]

 test_image = image.img_to_array(cropped_image)

 test_image = np.expand_dims(test_image, axis = 0)

 test_image = np.reshape(test_image,(30,20,3))

 test_image = np.expand_dims(test_image, axis=0)

 result_prob = model.predict(test_image)

 result_label = tf.argmax(result_prob, axis=-

1).numpy()[0]

 if result_label == 1:

 cv.rectangle(oriIMG, pt1=(c,r), pt2=(c+20,r+30),

color=(0,255,0), thickness=1)

cv.imshow('image',oriIMG)

cv.waitKey(0)

6. The Experimental Result

In this section, the experimental procedure and result are

briefly explain. This experiment is performed using

programming language python and openCV library. Code

program of training phase and head detection are written in

Program-1 and Program-2, respectively. To evaluate the

performance input format, we use scenes as shown in Fig 3.

To create CLAHE image and saliency map are written in

Program-3 and Program-4, respectively.

Fig 3: Some of the scenes used for this experiment [9]

Program-3:

-- Applying CLAHE process --

clahe = cv.createCLAHE(clipLimit=5)

imgCLAHE = clahe.apply(img)

Program-4:

-- SALIENCY map --

sal= cv.saliency.StaticSaliencyFineGrained_create()

(success, saliencyMap) = sal.computeSaliency(img)

saliencyMap = (saliencyMap * 255).astype("uint8")

Some of training data in various format are depicted in Fig

4.

 (a) (b) (c) (d)

Fig 4: Some of input format (a) original image [9] (b) grayscale

image (c) CLAHE image (d) saliency image

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

713

To evaluate the performance of input image format into

CNN, we use the quantities are below:

Accuracy:

 (1)

Precision:

 (2)

Recall:

 (3)

Where:

TP: True positive, i.e. head is detected as head,

TN: True negative, i.e. non-head is detected as non-head,

FP: False positive, i.e. non-head is detected as head,

FN: False negative, i.e. head is detected as non-head.

The detection result is shown in Table 1 and Fig 5. As Table

1 and Fig 5 show good head detection performance using

saliency map as input image. The precision value is low,

because there are many false positives.

Table 1: Performance of head detection

Input format Optimizer Accuracy Precision Recall

Grayscale
Adam 0.814 0.292 0.975

RMSprop 0.838 0.255 0.888

CLAHE
Adam 0.609 0.159 0.900

RMSprop 0.698 0.193 0.933

Saliency
Adam 0.870 0.350 0.983

RMSprop 0.781 0.279 1.00

Fig 5: The performance of different input format and optimizer

7. Conclusion

From the above study, we evaluate the performance of CNN

based head detection with various input image. We evaluate

grayscale, CLAHE and saliency format as inputs to our

CNN model. As shown in Table 1 and Fig 5, we conclude

that saliency map is a good input and adam is a good

optimizer for our CNN model.

Our future work is to observe other methods to achieve the

best performance, namely increasing the precision value.

8. References

1. Li B, Zhang J, Zhang Z, Xu Y. A People Counting

Method Based on Head Detection and Tracking. 2014

International Conference on Smart Computing, Hong

Kong, China, 2014, 136-141. Doi:

10.1109/SMARTCOMP.2014.7043851.

2. Rehder E, Kloeden H, Stiller C. Head detection and

orientation estimation for pedestrian safety, 17th

International IEEE Conference on Intelligent

Transportation Systems (ITSC), Qingdao, China, 2014,

2292-2297. Doi: 10.1109/ITSC.2014.6958057.

3. Vu T-H, Osokin A, Laptev I. Context-Aware CNNs for

Person Head Detection, 2015 IEEE International

Conference on Computer Vision (ICCV), Santiago,

Chile, 2015, 2893-2901. Doi: 10.1109/ICCV.2015.331.

4. Siyuan Chen F, Bremond Hung Nguyen, Thomas H.

Exploring depth information for head detection with

depth images, 2016 13th IEEE International Conference

on Advanced Video and Signal Based Surveillance

(AVSS), Colorado Springs, CO, 2016, 228-234. Doi:

10.1109/AVSS.2016.7738060

5. Dezhi Peng, Zikai Sun, Zirong Chen, Zirui Cai, Lele

Xie, Lianwen Jin. Detecting Heads using Feature

Refine Net and Cascaded Multi-scale Architecture.

2018 24th International Conference on Pattern

Recognition (ICPR), 2018, 2528-2533.

6. Saqib M, Khan SD, Sharma N, Blumenstein M. Person

Head Detection in Multiple Scales Using Deep

Convolutional Neural Networks, 2018 International

Joint Conference on Neural Networks (IJCNN), Rio de

Janeiro, Brazil, 2018, 1-7. Doi:

10.1109/IJCNN.2018.8489367.

7. Wang Y, Zhang L, Zuo Z, Cheng X. Head-Body

Correlation for Robust Crowd Human Detection, 2021

40th Chinese Control Conference (CCC), Shanghai,

China, 2021, 7282-7287. Doi:

10.23919/CCC52363.2021.9550747.

8. Xiyang Dai, Yinpeng Chen, Bin Xiao, Dongdong Chen,

Mengchen Liu, Lu Yuan, Lei Zhang. Dynamic Head:

Unifying Object Detection Heads with Attentions. 2021

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2021, 7369-7378.

9. Dalal N, Triggs B. Histograms of oriented gradients for

human detection. 2005 IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition (CVPR'05), San Diego, CA, USA, 2005;

1:886-893. Doi: 10.1109/CVPR.

10. Mudjirahardjo P, Rahmansyah AG, Dianti AS. The

Performance of Convolutional Neural Network

Architecture in Classification. International Journal of

Computer Applications Technology and Research

(IJCATR). 2024; 13(08):115-122. ISSN: 2319-8656.

Doi: 10.7753/IJCATR1308.1011.

11. Mudjirahardjo P, Rahmansyah AG, Dianti AS. Head

Classification based on Convolutional Neural Network.

International Journal of Advanced Multidisciplinary

Research and Studies (IJAMRS). 2024; 4(4):982-989.

ISSN: 2583-049x.

12. Mudjirahardjo P, Rahmansyah AG, Dianti AS. The

performance of color and grayscale image input in

convolutional neural network based head detection.

International Refereed Journal of Engineering and

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

714

Science (IRJES). 2024; 13(5):45-62. E-ISSN: 2319-

183x.

13. Venkatesh S, John De Britto C, Subhashini P,

Somasundaram K. Image Enhancement and

Implementation of CLAHE Algorithm and Bilinear

Interpolation. Cybernetics and systems: An

International Journal, 2022.

http://www.multiresearchjournal.com/

