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Abstract

In this research, we study and evaluate the performance of 

CNN based head detection with various input image. We 

evaluate grayscale, CLAHE and saliency map format as 

inputs to our CNN model. We use INRIA dataset for 

training and testing data. For training data, we use image 

size of 30×20 pixels. The experimental result shows saliency 

map is a good input and adam is a good optimizer for our 

CNN model. The experiment is conducted using 

programming language python and openCV library. 
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1. Introduction 

Head detection is one of task in computer vision. The objective of head detection is for a smart monitoring system, both 

indoors and outdoors. Head detection and orientation estimation are a vital component in the intention recognition of 

pedestrians. This research still has challenges, due to the complexity of human poses, background, lighting conditions, 

occlusions and camera view-points. Head detection may be more demanding than face recognition and pedestrian detection in 

the scenarios where a face turns away or body parts are occluded in the view of a sensor, but locating people is needed.  

Bin Li et al [1] captured the scene and detected human head from top view. They proposed a novel people counting method 

based on head detection and tracking to evaluate the number of people who move under an over-head camera. There were four 

main parts in the proposed method: foreground extraction, head detection, head tracking, and crossing-line judgment. The 

proposed method first utilized an effective foreground extraction method to obtain foreground regions of moving people, and 

some morphological operations were employed to optimize the foreground regions. Then it exploited a LBP feature based 

Adaboost classifier for head detection in the optimized foreground regions. After head detection was performed, the candidate 

head object was tracked by a local head tracking method based on Meanshift algorithm. Based on head tracking, the method 

finally used crossing-line judgment to determine whether the candidate head object will be counted or not. Experiments show 

that their method can obtain promising people counting accuracy about 96% and acceptable computation speed under different 

circumstances. 

Eike Rehder, et al. [2] proposed a novel framework to detect highly occluded pedestrians and estimate their head orientation. 

Detection was performed for pedestrian’s heads only. For this they employed a part-based classifier with HOG/SVM 

combinations. Head orientations were estimated using discrete orientation classifiers and LBP features. Results were improved 

by leveraging orientation estimation for head and torso as well as motion information. The orientation estimation was 

integrated over time using a Hidden Markov Model. From the discrete model they obtained a continuous head orientation. 

They evaluated their approach on image sequences with ground truth orientation measurements.  

Tuan-Hung Vu, et al. [3] focused on detecting human heads in natural scenes. Starting from the recent local R-CNN object 

detector, they extended it with two types of contextual cues. First, they leveraged person-scene relations and proposed a Global 

CNN model trained to predict positions and scales of heads directly from the full image. Second, they explicitly modeled 

pairwise relations among objects and trained a Pairwise CNN model using a structured-output surrogate loss. The Local, 

Global and Pairwise models were combined into a joint CNN framework. To train and test their full model, they introduced a 

large dataset composed of 369, 846 human heads annotated in 224, 740 movie frames. They evaluated their method and
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demonstrated improvements of person head detection 

against several recent baselines in three datasets.  

Siyuan Chen, et al. [4] introduced an efficient head detection 

approach for single depth images at low computational 

expense. First, a novel head descriptor was developed and 

used to classify pixels as head or non-head. They used depth 

values to guide each window size, to eliminate false 

positives of head centers, and to cluster head pixels, which 

significantly reduced the computation costs of searching for 

appropriate parameters. High head detection performance 

were achieved in experiments – 90% accuracy for our 

dataset containing heads with different body postures, head 

poses, and distances to a Kinect2 sensor, and above 70% 

precision on a public dataset composed of a few daily 

activities, which is higher than using a head-shoulder 

detector with HOG feature for depth images. 

Dexhi Peng, et al. [5] presented a method that can accurately 

detect heads especially small heads under the indoor scene. 

To achieve this, they proposed a novel method, Feature 

Refine Net (FRN), and a cascaded multi-scale architecture. 

FRN exploits the multi-scale hierarchical features created by 

deep convolutional neural networks. The proposed channel 

weighting method enables FRN to make use of features 

alternatively and effectively. To improve the performance of 

small head detection, they proposed a cascaded multi-scale 

architecture which has two detectors. One called global 

detector was responsible for detecting large objects and 

acquiring the global distribution information. The other 

called local detector was designed for small objects 

detection and made use of the information provided by 

global detector. Due to the lack of head detection datasets, 

they had collected and labeled a new large dataset named 

SCUT-HEAD which includes 4405 images with 111251 

heads annotated. Experiments show that their method had 

achieved state-of-the-art performance on SCUT-HEAD. 

Muhammad Saqib, et al. [6] detected human heads in natural 

scenes acquired from a publicly available dataset of 

Hollywood movies. In this work, we had used state-of-the-

art object detectors based on deep convolutional neural 

networks. These object detectors include region-based 

convolutional neural networks using region proposals for 

detections. Also, object detectors that detect objects in the 

single-shot by looking at the image only once for detections. 

They had used transfer learning for fine-tuning the network 

already trained on a massive amount of data. During the 

fine-tuning process, the models having high mean Average 

Precision (mAP) were used for evaluation of the test dataset.  

Yijing Wang, et al. [7] developed a simple effective proposal-

based human head and body detection framework in 

crowded scenes. Human heads were too small for detectors 

to locate and human bodies were frequently occluded in the 

crowds, which required more robust location capability of 

detectors. To tackle the issues above, they proposed a head-

body correlation module to utilize the location prior 

knowledge of human body and human head. Compared with 

Faster R-CNN, their approach can improve the Average 

Precision (AP) gains for human body and head detection by 

2.15% and 2.52% on the challenging CrowdHuman dataset. 

Xiyang Dai, et al. [8] presented a novel dynamic head 

framework to unify object detection heads with attentions. 

By coherently combining multiple self-attention 

mechanisms between feature levels for scale awareness, 

among spatial locations for spatial-awareness, and within 

output channels for task-awareness, the proposed approach 

significantly improved the representation ability of object 

detection heads without any computational overhead. 

Further experiments demonstrated that the effectiveness and 

efficiency of the proposed dynamic head on the COCO 

benchmark. With a standard ResNeXt-101- DCN backbone, 

they largely improved the performance over popular object 

detectors and achieved a new state-of-the-art at 54.0 AP. 

Furthermore, with latest transformer backbone and extra 

data, they can push current best COCO result to a new 

record at 60.6 AP. 

 

2. The Proposed Study 

In this section, we briefly explain the proposed study to 

evaluate the performance of various input format for 

convolutional neural network. We evaluate grayscale 

format, Contrast Limited Adaptive Histogram Equalization 

(CLAHE) format and saliency map as an input image. The 

study method is shown in Fig 1. Our architecture in this 

study use the architecture in Fig 2. The architecture has been 

evaluated in [11-12]. 

 

 
 

Fig 1: The proposed method of this study 
 

 
 

Fig 2: The CNN model we used [12] 
 

3. Convolutional Neural Network 

A Convolutional Neural Network (CNN) is a type of 

artificial neural network designed primarily for processing 

structured grid data, such as images. Here's a brief overview 

of its key components and how it works: 

Key Components 

1. Convolutional Layers: These layers apply 

convolutional filters (kernels) to the input data. Each 

filter detects specific features such as edges or textures. 

As the filter slides over the input image, it produces 

feature maps that represent the presence of these 

features. 

2. Activation Functions: After convolution, activation 

functions like ReLU (Rectified Linear Unit) introduce 

non-linearity to the model, helping it learn more 

complex patterns. 

3. Pooling Layers: These layers reduce the spatial 

dimensions (width and height) of the feature maps 

while retaining the most important information. 

Common pooling operations include max pooling 

(taking the maximum value in a region) and average 

pooling. 

4. Fully Connected Layers: After several convolutional 

and pooling layers, the network typically includes one 

or more fully connected layers that perform 

classification or regression based on the extracted 

features. 
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5. Dropout Layers: To prevent overfitting, dropout layers 

randomly "drop" (set to zero) a fraction of the neurons 

during training, which helps the network generalize 

better to new, unseen data. 

 

How It Works 

1. Feature Extraction: CNNs automatically learn and 

extract features from the input data. For an image, this 

means learning to detect edges, textures, and more 

complex structures as you go deeper into the network. 

2. Hierarchical Learning: Lower layers in the network 

might learn simple features like edges, while higher 

layers combine these features to detect more complex 

structures, such as shapes or objects. 

3. Classification/Regression: After extracting features, 

CNNs use fully connected layers to classify the image 

into categories or predict values if used for regression 

tasks. 

 

Applications 

CNNs are widely used in various fields: 

▪ Image Recognition: Identifying objects, people, or 

scenes in images. 

▪ Object Detection: Locating objects within an image 

and classifying them. 

▪ Semantic Segmentation: Assigning a class to each 

pixel in an image. 

▪ Video Analysis: Recognizing actions or events in video 

frames. 

▪ Medical Imaging: Analyzing medical scans for disease 

detection or diagnosis. 

 

4. Training phase 

The training phase in machine learning is a crucial part of 

developing a model that can make accurate predictions or 

decisions based on data. Here's a detailed look at what 

happens during the training phase: 

Steps in the Training Phase 

1. Data Preparation 

▪ Data Collection: Gather the dataset that will be 

used for training. This could be from various 

sources like databases, web scraping, or existing 

datasets. 

▪ Data Cleaning: Handle missing values, remove 

duplicates, and correct errors to ensure the data is 

of high quality. 

▪ Data Splitting: Divide the dataset into training, 

validation, and test sets. Typically, the training set 

is used to train the model, the validation set is used 

to tune hyperparameters, and the test set is used to 

evaluate the model's performance. 

 

2. Model Initialization 

▪ Choosing a Model: Select an appropriate model or 

algorithm based on the problem type (e.g., linear 

regression, decision tree, neural network). 

▪ Initializing Parameters: Set initial values for the 

model's parameters. For complex models like 

neural networks, these are often initialized 

randomly. 

 

3. Forward Pass 

▪ Input Data: Feed a batch of training data into the 

model. 

▪ Prediction: The model processes the input data 

through its layers (in the case of neural networks) 

and generates predictions or outputs. 

 

4. Loss Calculation 

▪ Loss Function: Compute the loss (or error) by 

comparing the model's predictions with the actual 

target values using a loss function (e.g., mean 

squared error, cross-entropy loss). 

▪ Objective: The goal is to minimize this loss 

function. 

 

5. Backward Pass (Backpropagation in Neural Networks) 

▪ Gradient Calculation: Calculate the gradients of 

the loss function with respect to each model 

parameter using techniques like gradient descent. 

▪ Parameter Update: Adjust the model parameters 

based on the gradients to reduce the loss. This 

involves using an optimizer (e.g., SGD, Adam) to 

apply updates. 

 

6. Iteration 

▪ Epochs: Repeat the forward pass, loss calculation, 

and backward pass for multiple epochs (iterations 

over the entire training dataset). 

▪ Mini-batch Processing: For large datasets, data is 

often processed in smaller mini-batches rather than 

all at once. 

 

7. Validation 

▪ Hyperparameter Tuning: Use the validation set 

to tune hyperparameters (e.g., learning rate, number 

of layers) and make adjustments to improve 

performance. 

▪ Model Evaluation: Periodically evaluate the 

model on the validation set to monitor its 

performance and ensure it is not overfitting. 

 

8. Regularization 

▪ Techniques: Apply regularization techniques (e.g., 

dropout, L2 regularization) to prevent overfitting 

and improve generalization. 

▪ Early Stopping: Monitor validation performance 

and stop training if performance on the validation 

set starts to degrade. 

 

9. Model Saving 

▪ Checkpointing: Save the model parameters and 

state at different points during training, especially 

after significant improvements. 

▪ Best Model: Save the best performing model based 

on validation metrics. 

 

Key Concepts 

▪ Overfitting: The model performs well on training data 

but poorly on validation/test data. This often means the 

model has learned noise in the training data. 

▪ Underfitting: The model performs poorly on both 

training and validation data, indicating it is too simple 

to capture the underlying patterns in the data. 

▪ Learning Rate: Determines the size of the steps taken 

during parameter updates. Too high a learning rate can 

cause the model to overshoot minima, while too low a 

rate can lead to slow convergence. 
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▪ Epochs: The number of times the entire training dataset 

is passed through the model. More epochs can lead to 

better training, but also increase the risk of overfitting. 

▪ Batch Size: The number of training examples used in 

one iteration of model updates. A larger batch size can 

stabilize training but requires more memory. 

 

The training phase is where a machine learning model learns 

from data by adjusting its parameters to minimize a loss 

function. It involves data preparation, model initialization, 

forward and backward passes, and iteration with validation. 

Regularization techniques are used to enhance the model's 

ability to generalize to new, unseen data. Proper 

management of this phase is essential for developing a 

robust and effective machine learning model. 

 

In this study, we have 2 classes and put the training data in 

directory: 

D:\Riset\[1] DATA_image\INRIA - ku\datasets_2000x2\ 

 Head_OK\  

  head (1).png 

  head (2).png 

  --- 

  --- 

 Head_NG 

  neg (1).png 

  neg (2).png 

  --- 

  ---  

 

Program-1: 

print('CNN training 30x20 Grayscale, part 3 ..\n'*5) 

print("ARZETI_Doyoubi,24.08.2024; 08:20") 

print("Panca" + 

      " Mudjirahardjo") 

print("") 

print("====================================") 

 

print('') 

optim = input('Optimizer: (1)ADAM, (2)RMSprop : ')  

print('') 

ep = input('The number of epoch: ') 

ep = int(ep) 

 

# ---------------------------------------------------------------------- 

 

import numpy as np 

import os 

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' 

 

import tensorflow as tf 

from tensorflow.keras import layers, models 

 

# ---------------------------------------------------------------------- 

 

def model(): 

    model = models.Sequential() 

 model.add(layers.Conv2D(64, (3, 3), activation='relu',                   

input_shape=(30, 20, 1))) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(32, (3, 3), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Flatten()) 

    model.add(layers.Dense(64, activation='relu')) 

    model.add(layers.Dense(64, activation='relu')) 

    model.add(layers.Dense(num_classes)) 

    print('') 

    model.summary() 

    return model 

 

# ---------------------------------------------------------------------- 

 

data_dir = "D:\Riset\[1] DATA_image\INRIA - 

ku\datasets_2000x2" 

 

train_ds = tf.keras.utils.image_dataset_from_directory( 

  data_dir, 

  validation_split=0.25,             

  subset="training", 

  seed=123, 

  color_mode="grayscale", 

  image_size=(30, 20), 

  batch_size=20) 

 

val_ds = tf.keras.utils.image_dataset_from_directory( 

  data_dir, 

  validation_split=0.25,             

  subset="validation", 

  seed=123, 

  color_mode="grayscale", 

  image_size=(30, 20), 

  batch_size=20) 

 

class_names = train_ds.class_names 

print(class_names) 

 

for image_batch, labels_batch in train_ds: 

  print(image_batch.shape) 

  print(labels_batch.shape) 

  break 

 

AUTOTUNE = tf.data.AUTOTUNE 

 

train_ds = 

train_ds.cache().prefetch(buffer_size=AUTOTUNE) 

val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) 

 

num_classes = 2 

 

# ---------------------------------------------------------------------- 

 

model.compile( 

  optimizer=optim, 

  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_l

ogits=True), 

  metrics=['accuracy']) 

 

history = model.fit( 

  train_ds, 

  validation_data=val_ds, 

  epochs=ep 

) 

 

plt.figure('Model: ' +modelKE +' , optimizer: ' +optim) 

plt.plot(history.history['accuracy'], label='train_accuracy') 

plt.plot(history.history['val_accuracy'], label = 

'val_accuracy') 

plt.xlabel('Epoch') 
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plt.ylabel('Accuracy') 

plt.ylim([0.5, 1]) 

plt.legend(loc='lower right') 

plt.show() 

 

print('') 

print(' ----- model evaluate ---- ') 

test_loss, test_acc = model.evaluate(val_ds)        # , 

verbose=1 

 

model.save('D:\Program\python 3.11.5\Training 

model\my_model.keras') 

 

5. Head Detection 

Program-2: 

print('CNN head detection, part 1 ..\n'*5) 

print("ARZETI_Nichiyoubi,18.08.2024; 12:43") 

print("Panca" + 

      " Mudjirahardjo") 

print("") 

print("====================================") 

 

print('') 

print('-- import library ---') 

print('') 

 

import numpy as np 

import os 

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' 

 

import cv2 as cv 

import tensorflow as tf 

from tensorflow.keras import models 

from keras.preprocessing import image 

 

# ---------------------------------------------------------------------- 

 

oriIMG = cv.imread("D:\Program\output 

image\person_1.jpg") 

 

h,w,c = oriIMG.shape 

print(oriIMG.shape) 

 

# ---------------------------------------------------------------------- 

 

print('') 

print('-- loading model ---') 

 

model = models.load_model('D:\Program\python 

3.11.5\Training model\myModel.keras') 

 

print('') 

 

# ---------------------------------------------------------------------- 

 

for r in range(0,h,15): 

    for c in range(0,w,10): 

        cropped_image = oriIMG[r:r+30,c:c+20] 

 

        test_image = image.img_to_array(cropped_image) 

        test_image = np.expand_dims(test_image, axis = 0) 

        test_image = np.reshape(test_image,(30,20,3)) 

        test_image = np.expand_dims(test_image, axis=0) 

        result_prob = model.predict(test_image) 

        result_label = tf.argmax(result_prob, axis=-

1).numpy()[0] 

 

        if result_label == 1: 

            cv.rectangle(oriIMG, pt1=(c,r), pt2=(c+20,r+30), 

color=(0,255,0), thickness=1) 

 

cv.imshow('image',oriIMG) 

cv.waitKey(0) 

 

6. The Experimental Result 

In this section, the experimental procedure and result are 

briefly explain. This experiment is performed using 

programming language python and openCV library. Code 

program of training phase and head detection are written in 

Program-1 and Program-2, respectively. To evaluate the 

performance input format, we use scenes as shown in Fig 3. 

To create CLAHE image and saliency map are written in 

Program-3 and Program-4, respectively. 

 

 
 

Fig 3: Some of the scenes used for this experiment [9] 

 

Program-3: 

# -- Applying CLAHE process -- 

clahe = cv.createCLAHE(clipLimit=5) 

imgCLAHE = clahe.apply(img) 

 

Program-4: 

# -- SALIENCY map -- 

sal= cv.saliency.StaticSaliencyFineGrained_create() 

(success, saliencyMap) = sal.computeSaliency(img) 

saliencyMap = (saliencyMap * 255).astype("uint8") 

 

Some of training data in various format are depicted in Fig 

4. 

 

    
 

    
 

    
  

 (a) (b) (c) (d) 
 

Fig 4: Some of input format (a) original image [9] (b) grayscale 

image (c) CLAHE image (d) saliency image 
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To evaluate the performance of input image format into 

CNN, we use the quantities are below: 

Accuracy:  

 

 (1) 

 

Precision: 

 

 (2) 

 

Recall: 

  

 (3) 

 

Where: 

TP: True positive, i.e. head is detected as head, 

TN: True negative, i.e. non-head is detected as non-head, 

FP: False positive, i.e. non-head is detected as head, 

FN: False negative, i.e. head is detected as non-head. 

 

The detection result is shown in Table 1 and Fig 5. As Table 

1 and Fig 5 show good head detection performance using 

saliency map as input image. The precision value is low, 

because there are many false positives. 

 
Table 1: Performance of head detection 

 

Input format Optimizer Accuracy Precision Recall 

Grayscale 
Adam 0.814 0.292 0.975 

RMSprop 0.838 0.255 0.888 

CLAHE 
Adam 0.609 0.159 0.900 

RMSprop 0.698 0.193 0.933 

Saliency 
Adam 0.870 0.350 0.983 

RMSprop 0.781 0.279 1.00 

  

 
 

Fig 5: The performance of different input format and optimizer 
 

7. Conclusion 

From the above study, we evaluate the performance of CNN 

based head detection with various input image. We evaluate 

grayscale, CLAHE and saliency format as inputs to our 

CNN model. As shown in Table 1 and Fig 5, we conclude 

that saliency map is a good input and adam is a good 

optimizer for our CNN model. 

Our future work is to observe other methods to achieve the 

best performance, namely increasing the precision value. 

 

 

8. References 

1. Li B, Zhang J, Zhang Z, Xu Y. A People Counting 

Method Based on Head Detection and Tracking. 2014 

International Conference on Smart Computing, Hong 

Kong, China, 2014, 136-141. Doi: 

10.1109/SMARTCOMP.2014.7043851. 

2. Rehder E, Kloeden H, Stiller C. Head detection and 

orientation estimation for pedestrian safety, 17th 

International IEEE Conference on Intelligent 

Transportation Systems (ITSC), Qingdao, China, 2014, 

2292-2297. Doi: 10.1109/ITSC.2014.6958057.  

3. Vu T-H, Osokin A, Laptev I. Context-Aware CNNs for 

Person Head Detection, 2015 IEEE International 

Conference on Computer Vision (ICCV), Santiago, 

Chile, 2015, 2893-2901. Doi: 10.1109/ICCV.2015.331. 

4. Siyuan Chen F, Bremond Hung Nguyen, Thomas H. 

Exploring depth information for head detection with 

depth images, 2016 13th IEEE International Conference 

on Advanced Video and Signal Based Surveillance 

(AVSS), Colorado Springs, CO, 2016, 228-234. Doi: 

10.1109/AVSS.2016.7738060 

5. Dezhi Peng, Zikai Sun, Zirong Chen, Zirui Cai, Lele 

Xie, Lianwen Jin. Detecting Heads using Feature 

Refine Net and Cascaded Multi-scale Architecture. 

2018 24th International Conference on Pattern 

Recognition (ICPR), 2018, 2528-2533. 

6. Saqib M, Khan SD, Sharma N, Blumenstein M. Person 

Head Detection in Multiple Scales Using Deep 

Convolutional Neural Networks, 2018 International 

Joint Conference on Neural Networks (IJCNN), Rio de 

Janeiro, Brazil, 2018, 1-7. Doi: 

10.1109/IJCNN.2018.8489367.  

7. Wang Y, Zhang L, Zuo Z, Cheng X. Head-Body 

Correlation for Robust Crowd Human Detection, 2021 

40th Chinese Control Conference (CCC), Shanghai, 

China, 2021, 7282-7287. Doi: 

10.23919/CCC52363.2021.9550747.  

8. Xiyang Dai, Yinpeng Chen, Bin Xiao, Dongdong Chen, 

Mengchen Liu, Lu Yuan, Lei Zhang. Dynamic Head: 

Unifying Object Detection Heads with Attentions. 2021 

IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR), 2021, 7369-7378. 

9. Dalal N, Triggs B. Histograms of oriented gradients for 

human detection. 2005 IEEE Computer Society 

Conference on Computer Vision and Pattern 

Recognition (CVPR'05), San Diego, CA, USA, 2005; 

1:886-893. Doi: 10.1109/CVPR. 

10. Mudjirahardjo P, Rahmansyah AG, Dianti AS. The 

Performance of Convolutional Neural Network 

Architecture in Classification. International Journal of 

Computer Applications Technology and Research 

(IJCATR). 2024; 13(08):115-122. ISSN: 2319-8656. 

Doi: 10.7753/IJCATR1308.1011. 

11. Mudjirahardjo P, Rahmansyah AG, Dianti AS. Head 

Classification based on Convolutional Neural Network. 

International Journal of Advanced Multidisciplinary 

Research and Studies (IJAMRS). 2024; 4(4):982-989. 

ISSN: 2583-049x. 

12. Mudjirahardjo P, Rahmansyah AG, Dianti AS. The 

performance of color and grayscale image input in 

convolutional neural network based head detection. 

International Refereed Journal of Engineering and 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

714 

Science (IRJES). 2024; 13(5):45-62. E-ISSN: 2319-

183x.  

13. Venkatesh S, John De Britto C, Subhashini P, 

Somasundaram K. Image Enhancement and 

Implementation of CLAHE Algorithm and Bilinear 

Interpolation. Cybernetics and systems: An 

International Journal, 2022. 

http://www.multiresearchjournal.com/

