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Abstract

In this paper, we study the head classification using 

Convolutional Neural Network (CNN). We study the effect 

of optimizer in various network architecture. We use INRIA 

datasets and python programming language. We study and 

evaluate 2 models and 8 optimizers. We evaluate the 

validation accuracy and training computation time in one 

epoch. In our experiment result, except optimizers of SGD 

and Adadelta, the validation accuracy are good. Their 

performance are above 90%. The average training time of 1 

epoch is 3 second. 
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1. Introduction 

There are many object classification method implemented in automation system. However, nowadays, CNN become a popular 

architecture in object classification. This due to the feature extraction and classifier task to be done in sequential process. 

Convolutional stage is a feature extraction, followed by a neural network as an object classifier. 

Object classification is a task in computer vision where the goal is to identify and categorize objects within an image. This 

process involves determining the presence and class of objects from a set of predefined categories. Here’s a breakdown of how 

object classification works and the approaches used: 

 

1. Overview of Object Classification 

1. Objective: The main goal is to assign a label or category to an object in an image based on its visual content. For 

example, classifying an image as "cat," "dog," or "car." 

2. Applications: Object classification is widely used in various fields such as autonomous driving (detecting pedestrians or 

other vehicles), medical imaging (identifying tumors), and image search engines (finding similar images). 

 

2. Process 

1. Data Collection and Annotation: 

▪ Dataset: Collect a large dataset of images where each image is labeled with the correct category. This dataset is often 

divided into training, validation, and test sets. 

▪ Annotation: Label each image with the correct class. This can be done manually or using automated tools. 

2. Preprocessing: 

▪ Resizing: Standardize image sizes to ensure uniform input dimensions for the model. 

▪ Normalization: Scale pixel values to a range (e.g., 0 to 1) to improve model convergence. 

▪ Augmentation: Apply transformations like rotations, flips, and shifts to increase dataset diversity and robustness. 

3. Model Training: 

▪ Feature Extraction: Use models like Convolutional Neural Networks (CNNs) to automatically extract features from 

images. 

▪ Classification Layer: After feature extraction, a classifier (often a fully connected layer or a softmax layer) assigns 

probabilities to each class. 

▪ Loss Function: Use functions like Cross-Entropy Loss to measure how well the model’s predictions match the actual 

labels. 
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▪ Optimization: Adjust model parameters using 

optimization algorithms like SGD or Adam to minimize 

the loss function. 

4. Evaluation: 

▪ Metrics: Evaluate the model’s performance using 

metrics such as accuracy, precision, recall, and F1 

score. For multi-class problems, confusion matrices can 

also be helpful. 

5. Inference: 

▪ Prediction: For new, unseen images, the trained model 

predicts the class based on learned features. 

 

3. Techniques and Models 

1. Traditional Methods: 

▪ Handcrafted Features: Early approaches used 

manually designed features (e.g., HOG, SIFT) 

combined with classifiers like Support Vector Machines 

(SVMs). These methods are less effective than modern 

deep learning techniques but were widely used before 

CNNs became dominant. 

2. Deep Learning Approaches: 

▪ Convolutional Neural Networks (CNNs): CNNs are 

the backbone of modern object classification. They 

consist of convolutional layers, activation functions, 

pooling layers, and fully connected layers to learn 

hierarchical features. 

▪ LeNet-5: One of the earliest CNN architectures 

designed for digit recognition. 

▪ AlexNet: A deep CNN that won the 2012 ImageNet 

competition and demonstrated the power of deep 

learning. 

▪ VGG: Known for its simplicity and depth, with 

architectures like VGG16 and VGG19. 

▪ ResNet: Introduces residual connections to allow very 

deep networks (e.g., ResNet50, ResNet101). 

▪ Inception: Features modules with multiple filter sizes 

to capture various aspects of the data. 

3. Transfer Learning: 

▪ Pre-trained Models: Use models pre-trained on large 

datasets like ImageNet and fine-tune them on specific 

tasks. This approach leverages previously learned 

features and speeds up the training process. 

▪ Feature Extraction: Use a pre-trained model to extract 

features from images and train a simple classifier on top 

of these features. 

4. Advanced Techniques: 

▪ Attention Mechanisms: Improve classification by 

focusing on important parts of the image, useful in tasks 

where object localization and context are crucial. 

▪ Ensemble Methods: Combine multiple models to 

improve classification performance by aggregating their 

predictions. 

 

4. Challenges 

1. Variability: Objects can vary in size, shape, color, and 

orientation, making classification difficult. 

2. Class Imbalance: Some classes may have fewer 

examples, leading to biased models. 

3. Adversarial Attacks: Small perturbations to input 

images can fool models into making incorrect 

predictions. 

4. Computational Resources: Training deep networks 

requires significant computational power and memory. 

Object classification continues to be an evolving field with 

ongoing research aimed at improving accuracy, efficiency, 

and robustness of models. 

As we know, feature extraction is a crucial step in data 

preprocessing, particularly in fields like machine learning, 

computer vision, and signal processing. It involves 

identifying and selecting the most relevant information 

(features) from raw data to improve the efficiency and 

performance of models. Here's a brief overview of feature 

extraction. The main goal is to reduce the dimensionality of 

the data while preserving important information. This makes 

it easier and faster to train models, and often leads to better 

performance. 

Some techniques for feature extraction, are:  

▪ Statistical Methods: Techniques like mean, variance, 

skewness, and kurtosis that summarize the statistical 

properties of the data. 

▪ Transformation Methods: Methods such as Principal 

Component Analysis (PCA) and Linear Discriminant 

Analysis (LDA) that transform the data into a new 

space where features are uncorrelated or optimized for 

classification. 

▪ Domain-Specific Methods: In image processing, for 

instance, techniques like edge detection, histograms of 

oriented gradients (HOG), or convolutional neural 

network (CNN) features are used. In text processing, 

methods like term frequency-inverse document 

frequency (TF-IDF) or word embeddings (e.g., 

Word2Vec) are common. 

 

Feature extraction is a blend of art and science, often 

requiring domain knowledge to determine which features 

will be most useful for a given problem. 

A Convolutional Neural Network (CNN) is a specialized 

type of artificial neural network designed to process 

structured grid data, such as images. CNNs are particularly 

powerful for tasks related to image recognition and 

computer vision but have also been applied successfully to 

other types of data. 

Here’s a high-level overview of how CNNs work and their 

key components: 

1. Architecture,  

▪ Convolutional Layers: These layers apply 

convolutional filters (kernels) to the input data to create 

feature maps. Each filter detects specific features such 

as edges or textures. The convolution operation 

involves sliding the filter over the input and computing 

the dot product. 

▪ Activation Functions: After the convolution operation, 

the feature maps are passed through an activation 

function, typically the Rectified Linear Unit (ReLU). 

ReLU introduces non-linearity by setting all negative 

values to zero, allowing the network to learn complex 

patterns. 

▪ Pooling Layers: Pooling (or subsampling) layers 

reduce the spatial dimensions of the feature maps, 

which helps in reducing computation and preventing 

overfitting. Common pooling operations include Max 

Pooling (taking the maximum value in a region) and 

Average Pooling (taking the average value). 

▪ Fully Connected Layers: After several convolutional 

and pooling layers, the resulting feature maps are 

flattened into a vector and passed through fully 

connected (dense) layers. These layers perform the final 
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classification or regression tasks based on the extracted 

features. 

▪ Dropout Layers: Dropout is a regularization technique 

used to prevent overfitting. During training, dropout 

layers randomly set a fraction of the neurons to zero, 

which helps the network to generalize better. 

2. Training Process, 

▪ Forward Propagation: During training, an input image 

is passed through the network layer by layer, and the 

output is computed. Each layer applies its specific 

operation (convolution, activation, pooling, etc.) to 

transform the input data into higher-level features. 

▪ Loss Function: The output of the network is compared 

to the true labels using a loss function (e.g., Cross-

Entropy Loss for classification tasks). The loss function 

quantifies how well the network is performing. 

▪ Backpropagation: The network's weights are updated 

to minimize the loss function. Backpropagation 

computes the gradients of the loss with respect to each 

weight using the chain rule and adjusts the weights 

accordingly. This process typically uses optimization 

algorithms like Stochastic Gradient Descent (SGD) or 

Adam. 

3. Advantages, 

▪ Feature Learning: CNNs automatically learn features 

from the data rather than relying on manual feature 

extraction. This makes them highly effective for tasks 

like image and speech recognition. 

▪ Spatial Hierarchy: CNNs capture spatial hierarchies 

and local patterns, which are crucial for understanding 

images and other grid-like data. 

▪ Parameter Sharing: Convolutional layers use shared 

weights (filters) across different parts of the input, 

which reduces the number of parameters compared to 

fully connected networks and makes them more 

computationally efficient. 

4. Variants and Extensions, 

▪ Deep CNNs: Networks with many convolutional 

layers, such as VGG, ResNet, and Inception, which can 

learn more complex features and achieve higher 

performance on challenging tasks. 

▪ Transfer Learning: Using pre-trained CNNs (e.g., 

trained on ImageNet) and fine-tuning them for specific 

tasks can leverage existing knowledge and improve 

performance with less training data. 

▪ Object Detection: Specialized architectures like YOLO 

(You Only Look Once) and SSD (Single Shot MultiBox 

Detector) extend CNNs for detecting objects within 

images and localizing them with bounding boxes. 

▪ Segmentation: Networks like U-Net and Mask R-CNN 

are used for pixel-wise segmentation tasks, such as 

identifying regions of interest within images. 

 

CNNs have revolutionized many fields by providing state-

of-the-art performance on tasks that involve spatial data, and 

they continue to be an active area of research and 

development. 

In machine learning, an optimizer is an algorithm or 

method used to adjust the parameters (weights) of a model 

in order to minimize the loss function, which measures how 

well the model's predictions match the actual target values. 

The choice of optimizer can significantly impact the 

performance and efficiency of the training process. Here’s 

an overview of various optimizers and their roles: 

1. Stochastic Gradient Descent (SGD) is a popular 

optimization algorithm used in machine learning and 

deep learning for training models. It is an iteration-

based variant of gradient descent that updates model 

parameters more frequently, which can help to speed up 

the training process.  

2. The Adam optimizer (short for Adaptive Moment 

Estimation) is a widely used optimization algorithm in 

machine learning and deep learning that combines the 

advantages of two other popular optimizers: 

Momentum and RMSprop. Adam is designed to be 

computationally efficient, have low memory 

requirements, and be well-suited for problems with 

large datasets and parameters.  

3. The RMSprop (Root Mean Square Propagation) 

optimizer is an adaptive learning rate optimization 

algorithm designed to address some of the challenges 

associated with traditional gradient descent methods. It 

is particularly useful in training neural networks and 

handling problems with noisy gradients or varying 

gradient scales.  

4. The Adagrad (Adaptive Gradient Algorithm) 

optimizer is an adaptive learning rate optimization 

algorithm that adjusts the learning rate for each 

parameter individually based on the historical gradients. 

This makes it particularly effective for problems with 

sparse gradients or features, such as those encountered 

in natural language processing and computer vision 

tasks.  

5. The AdamW (Adam with Weight Decay) optimizer is 

an extension of the Adam optimizer that decouples 

weight decay from the optimization steps, leading to 

improved regularization and generalization. It addresses 

a common issue in Adam where weight decay (used for 

regularization) is combined with the gradient updates in 

a way that can affect the performance of the model. 

6. The Adadelta optimizer is an extension of the Adagrad 

optimizer designed to address some of the limitations 

associated with Adagrad. Adagrad's primary issue is its 

aggressive, monotonically decreasing learning rate, 

which can lead to very slow convergence or early 

stopping. Adadelta aims to mitigate this problem by 

using a moving window of accumulated past gradients 

to adapt learning rates and maintain more effective 

updates over time. 

7. The Adamax optimizer is a variant of the Adam 

optimizer, designed to handle certain limitations of 

Adam and provide additional robustness. It is 

particularly useful for training deep neural networks 

and works well in scenarios where the gradients are 

very sparse or the data is noisy. 

8. The Nadam (Nesterov-accelerated Adaptive Moment 

Estimation) optimizer is a combination of two 

optimization techniques: Nesterov Accelerated Gradient 

(NAG) and the Adam optimizer. It merges the benefits 

of both methods to improve training stability and 

convergence in deep learning models. 

 

Choosing the right architecture and optimizer will improve 

the classification accuracy. 

 

2. Method 

Our study method is depicted in Fig 1. In that figure, the 

input image size is 30×20 in color format, as shown in Fig 2. 
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Convolution and max pooling stages are to extract image’s 

feature.  

The first convolution uses 32 kernels of size 3×3, followed 

max pooling of size 2×2, followed the second convolution 

uses 64 kernels of size 3×3, and so on. After flatten, i.e. 

converting 2D array into 1D array, we use 64 nodes in 

hidden layer. Finally we use 2 outputs layer as 2 classes. 

 

 
 

(a) 

 

 
 

(b) 
 

Fig 1: Architectures we used in this study (a) model-1 (b) model-2 
 

       
 

Fig 2: Some of head in INRIA datasets [2] 

 

In Fig 2, the head data captured in various position and pose. 

 

3. Experimental Result 

We perform the experiment to classify two classes, head and 

no-head class. As images in Fig 2 show some of head data 

for head class and another images are no-head class. We 

have 4000 image files belonging to 2 classes, using 3000 

files for training and 1000 files for validation. 

We put the images in directory image: 

D:\Dataset\ 

 Head_OK\ 

  head_ok(1).png 

  head_ok(2).png 

  head_ok(3).png 

  --- 

  --- 

 Head_NG\ 

  head_ng(1).png 

  head_ng(2).png 

  head_ng(3).png 

  --- 

  --- 

 

We use python language to implement this experiment. 

The programming code to create the architecture of model-1 

and model-2, as below: 

 

def model_1(): 

    model = models.Sequential() 

    model.add(layers.Conv2D(32, (3, 3), activation='relu', 

input_shape=(30, 20, 3))) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(64, (3, 3), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(64, (3, 3), activation='relu')) 

    model.add(layers.Flatten()) 

    model.add(layers.Dense(64, activation='relu')) 

    model.add(layers.Dense(num_classes)) 

 

    print('') 

    model.summary() 

    return model 

 

def model_2(): 

    model = models.Sequential() 

    model.add(layers.Conv2D(32, (3, 3), activation='relu', 

input_shape=(30, 20, 3))) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(64, (3, 3), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Flatten()) 

    model.add(layers.Dense(64, activation='relu')) 

    model.add(layers.Dense(num_classes)) 

 

    print('') 

    model.summary() 

    return model 
 

Model summary of model-1 and model-2 are depicted in Fig 

3 and Fig 4 respectively. 

 

 
 

Fig 3: Model summary of model-1 
 

 
 

Fig 4: Model summary of model-2 
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The complete source code are written in Program-1. 

 

Program-1: 

print('CNN, part 3 ..\n'*5) 

print("ARZETI_Getsuyoubi,12.08.2024; 03:43") 

print("Panca" + 

      " Mudjirahardjo") 

print("") 

print("====================================") 

 

print("") 

 

modelKE = input('What model (1,2) : ') 

 

print('') 

optim = input('Optimizer: (1)SGD, (2)ADAM, (3)RMSprop, 

(4)Adagrad, (5)AdamW, (6)Adadelta, (7)Adamax, 

(8)Nadam : ')  

if optim=='1': 

    optim='SGD' 

    print('-- optimizer: SGD') 

elif optim=='2': 

    optim='ADAM' 

    print('-- optimizer: ADAM') 

elif optim=='3': 

    optim='RMSprop' 

    print('-- optimizer: RMSprop') 

elif optim=='4': 

    optim='Adagrad' 

    print('-- optimizer: Adagrad') 

elif optim=='5': 

    optim='AdamW' 

    print('-- optimizer: AdamW') 

elif optim=='6': 

    optim='Adadelta' 

    print('-- optimizer: Adadelta') 

elif optim=='7': 

    optim='Adamax' 

    print('-- optimizer: Adamax') 

elif optim=='8': 

    optim='Nadam' 

    print('-- optimizer: Nadam') 

 

print('') 

ep = input('Jumlah epoch (1 epoch 42 sec !): ') 

ep = int(ep) 

 

# ---------------------------------------------------------------------- 

 

import numpy as np 

import os 

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' 

 

from PIL import Image 

import tensorflow as tf 

from tensorflow.keras import datasets, layers, models 

from tensorflow.keras.preprocessing.image import 

ImageDataGenerator 

from keras.preprocessing import image 

 

# ---------------------------------------------------------------------- 

 

def model_1(): 

    model = models.Sequential() 

    model.add(layers.Conv2D(32, (3, 3), activation='relu', 

input_shape=(30, 20, 3))) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(64, (3, 3), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(64, (3, 3), activation='relu')) 

    model.add(layers.Flatten()) 

    model.add(layers.Dense(64, activation='relu')) 

    model.add(layers.Dense(num_classes)) 

 

    print('') 

    model.summary() 

    return model 

 

def model_2(): 

    model = models.Sequential() 

    model.add(layers.Conv2D(32, (3, 3), activation='relu', 

input_shape=(30, 20, 3))) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(64, (3, 3), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Flatten()) 

    model.add(layers.Dense(64, activation='relu')) 

    model.add(layers.Dense(num_classes)) 

 

    print('') 

    model.summary() 

    return model 

 

# ---------------------------------------------------------------------- 

 

data_dir = "D:\Datasets" 

 

train_ds = tf.keras.utils.image_dataset_from_directory( 

  data_dir, 

  validation_split=0.25, 

  subset="training", 

  seed=123, 

  image_size=(30, 20), 

  batch_size=20) 

 

val_ds = tf.keras.utils.image_dataset_from_directory( 

  data_dir, 

  validation_split=0.25, 

  subset="validation", 

  seed=123, 

  image_size=(30, 20), 

  batch_size=20) 

 

class_names = train_ds.class_names 

print(class_names) 

 

import matplotlib.pyplot as plt 

 

for image_batch, labels_batch in train_ds: 

  print(image_batch.shape) 

  print(labels_batch.shape) 

  break 

 

normalization_layer = tf.keras.layers.Rescaling(1./255) 

 

normalized_ds = train_ds.map(lambda x, y: 

(normalization_layer(x), y)) 

image_batch, labels_batch = next(iter(normalized_ds)) 
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first_image = image_batch[0] 

print(np.min(first_image), np.max(first_image)) 

 

AUTOTUNE = tf.data.AUTOTUNE 

 

train_ds = 

train_ds.cache().prefetch(buffer_size=AUTOTUNE) 

val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) 

 

num_classes = 2 

 

# ---------------------------------------------------------------------- 

 

print("")  

print("")  

if modelKE == '1': 

    model = model_1() 

    print("")  

    print('---- model ke 1 (satu) ---') 

elif modelKE == '2': 

    model = model_2() 

    print("")  

    print('---- model ke 2 (dua) ---') 

 

print('')  

print('---- Optimizer: ' +optim) 

print('---- training dimulai --- ')  

print('')  

 

model.compile( 

  optimizer=optim, 

  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_l

ogits=True), 

  metrics=['accuracy']) 

 

history = model.fit( 

  train_ds, 

  validation_data=val_ds, 

  epochs=ep 

) 

 

plt.figure('Model: ' +modelKE +' , optimizer: ' +optim) 

plt.plot(history.history['accuracy'], label='train_accuracy') 

plt.plot(history.history['val_accuracy'], label = 

'val_accuracy') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.ylim([0.5, 1]) 

plt.legend(loc='lower right') 

plt.show() 

 

print('') 

print(' ----- model evaluate ---- ') 

test_loss, test_acc = model.evaluate(val_ds) 

 

A. Model-1 Result 

The training and validation accuracy of model-1 with 

various optimizers are shown in Fig 5. 

 

  

  

  

  
 

Fig 5: Training and validation accuracy of model-1 with various 

optimizers 

 

B. Model-2 Result 

The training and validation accuracy of model-2 with 

various optimizers are shown in Fig 6. 
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Fig 6: Training and validation accuracy of model-2 with various 

optimizers 
 

 
 

Fig 7: Training history of model-2, optimizer: adamax 

  

The overall result of our study is depicted in Fig 8. 

 

 
 

Fig 8: Comparison validation accuracy with various optimizers 
 

4. Conclusions  

We have studied and evaluated head classification for 2 

models and 8 optimizers, using INRIA datasets. In our 

experiment result, except optimizers of SGD and Adadelta, 

the validation accuracy are good. Their performance are 

above 90% as shown in Fig 8. The average training time of 

1 epoch is 3 second. 
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