

982

Int. j. adv. multidisc. res. stud. 2024; 4(4):982-989

Head Classification based on Convolutional Neural Network

1 Panca Mudjirahardjo, 2 Aqil Gama Rahmansyah, 3 Alya Shafa Dianti
1, 2 Department of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya, Malang-Indonesia

3 Department of Statistics, Faculty of Mathematic and Natural Science, Universitas Brawijaya, Malang-Indonesia

Corresponding Author: Panca Mudjirahardjo

Abstract

In this paper, we study the head classification using

Convolutional Neural Network (CNN). We study the effect

of optimizer in various network architecture. We use INRIA

datasets and python programming language. We study and

evaluate 2 models and 8 optimizers. We evaluate the

validation accuracy and training computation time in one

epoch. In our experiment result, except optimizers of SGD

and Adadelta, the validation accuracy are good. Their

performance are above 90%. The average training time of 1

epoch is 3 second.

Keywords: Head Classification, CNN, Optimizer, Network Architecture, Validation Accuracy

1. Introduction

There are many object classification method implemented in automation system. However, nowadays, CNN become a popular

architecture in object classification. This due to the feature extraction and classifier task to be done in sequential process.

Convolutional stage is a feature extraction, followed by a neural network as an object classifier.

Object classification is a task in computer vision where the goal is to identify and categorize objects within an image. This

process involves determining the presence and class of objects from a set of predefined categories. Here’s a breakdown of how

object classification works and the approaches used:

1. Overview of Object Classification

1. Objective: The main goal is to assign a label or category to an object in an image based on its visual content. For

example, classifying an image as "cat," "dog," or "car."

2. Applications: Object classification is widely used in various fields such as autonomous driving (detecting pedestrians or

other vehicles), medical imaging (identifying tumors), and image search engines (finding similar images).

2. Process

1. Data Collection and Annotation:

▪ Dataset: Collect a large dataset of images where each image is labeled with the correct category. This dataset is often

divided into training, validation, and test sets.

▪ Annotation: Label each image with the correct class. This can be done manually or using automated tools.

2. Preprocessing:

▪ Resizing: Standardize image sizes to ensure uniform input dimensions for the model.

▪ Normalization: Scale pixel values to a range (e.g., 0 to 1) to improve model convergence.

▪ Augmentation: Apply transformations like rotations, flips, and shifts to increase dataset diversity and robustness.

3. Model Training:

▪ Feature Extraction: Use models like Convolutional Neural Networks (CNNs) to automatically extract features from

images.

▪ Classification Layer: After feature extraction, a classifier (often a fully connected layer or a softmax layer) assigns

probabilities to each class.

▪ Loss Function: Use functions like Cross-Entropy Loss to measure how well the model’s predictions match the actual

labels.

Received: 01-07-2024

Accepted: 10-08-2024

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

983

▪ Optimization: Adjust model parameters using

optimization algorithms like SGD or Adam to minimize

the loss function.

4. Evaluation:

▪ Metrics: Evaluate the model’s performance using

metrics such as accuracy, precision, recall, and F1

score. For multi-class problems, confusion matrices can

also be helpful.

5. Inference:

▪ Prediction: For new, unseen images, the trained model

predicts the class based on learned features.

3. Techniques and Models

1. Traditional Methods:

▪ Handcrafted Features: Early approaches used

manually designed features (e.g., HOG, SIFT)

combined with classifiers like Support Vector Machines

(SVMs). These methods are less effective than modern

deep learning techniques but were widely used before

CNNs became dominant.

2. Deep Learning Approaches:

▪ Convolutional Neural Networks (CNNs): CNNs are

the backbone of modern object classification. They

consist of convolutional layers, activation functions,

pooling layers, and fully connected layers to learn

hierarchical features.

▪ LeNet-5: One of the earliest CNN architectures

designed for digit recognition.

▪ AlexNet: A deep CNN that won the 2012 ImageNet

competition and demonstrated the power of deep

learning.

▪ VGG: Known for its simplicity and depth, with

architectures like VGG16 and VGG19.

▪ ResNet: Introduces residual connections to allow very

deep networks (e.g., ResNet50, ResNet101).

▪ Inception: Features modules with multiple filter sizes

to capture various aspects of the data.

3. Transfer Learning:

▪ Pre-trained Models: Use models pre-trained on large

datasets like ImageNet and fine-tune them on specific

tasks. This approach leverages previously learned

features and speeds up the training process.

▪ Feature Extraction: Use a pre-trained model to extract

features from images and train a simple classifier on top

of these features.

4. Advanced Techniques:

▪ Attention Mechanisms: Improve classification by

focusing on important parts of the image, useful in tasks

where object localization and context are crucial.

▪ Ensemble Methods: Combine multiple models to

improve classification performance by aggregating their

predictions.

4. Challenges

1. Variability: Objects can vary in size, shape, color, and

orientation, making classification difficult.

2. Class Imbalance: Some classes may have fewer

examples, leading to biased models.

3. Adversarial Attacks: Small perturbations to input

images can fool models into making incorrect

predictions.

4. Computational Resources: Training deep networks

requires significant computational power and memory.

Object classification continues to be an evolving field with

ongoing research aimed at improving accuracy, efficiency,

and robustness of models.

As we know, feature extraction is a crucial step in data

preprocessing, particularly in fields like machine learning,

computer vision, and signal processing. It involves

identifying and selecting the most relevant information

(features) from raw data to improve the efficiency and

performance of models. Here's a brief overview of feature

extraction. The main goal is to reduce the dimensionality of

the data while preserving important information. This makes

it easier and faster to train models, and often leads to better

performance.

Some techniques for feature extraction, are:

▪ Statistical Methods: Techniques like mean, variance,

skewness, and kurtosis that summarize the statistical

properties of the data.

▪ Transformation Methods: Methods such as Principal

Component Analysis (PCA) and Linear Discriminant

Analysis (LDA) that transform the data into a new

space where features are uncorrelated or optimized for

classification.

▪ Domain-Specific Methods: In image processing, for

instance, techniques like edge detection, histograms of

oriented gradients (HOG), or convolutional neural

network (CNN) features are used. In text processing,

methods like term frequency-inverse document

frequency (TF-IDF) or word embeddings (e.g.,

Word2Vec) are common.

Feature extraction is a blend of art and science, often

requiring domain knowledge to determine which features

will be most useful for a given problem.

A Convolutional Neural Network (CNN) is a specialized

type of artificial neural network designed to process

structured grid data, such as images. CNNs are particularly

powerful for tasks related to image recognition and

computer vision but have also been applied successfully to

other types of data.

Here’s a high-level overview of how CNNs work and their

key components:

1. Architecture,

▪ Convolutional Layers: These layers apply

convolutional filters (kernels) to the input data to create

feature maps. Each filter detects specific features such

as edges or textures. The convolution operation

involves sliding the filter over the input and computing

the dot product.

▪ Activation Functions: After the convolution operation,

the feature maps are passed through an activation

function, typically the Rectified Linear Unit (ReLU).

ReLU introduces non-linearity by setting all negative

values to zero, allowing the network to learn complex

patterns.

▪ Pooling Layers: Pooling (or subsampling) layers

reduce the spatial dimensions of the feature maps,

which helps in reducing computation and preventing

overfitting. Common pooling operations include Max

Pooling (taking the maximum value in a region) and

Average Pooling (taking the average value).

▪ Fully Connected Layers: After several convolutional

and pooling layers, the resulting feature maps are

flattened into a vector and passed through fully

connected (dense) layers. These layers perform the final

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

984

classification or regression tasks based on the extracted

features.

▪ Dropout Layers: Dropout is a regularization technique

used to prevent overfitting. During training, dropout

layers randomly set a fraction of the neurons to zero,

which helps the network to generalize better.

2. Training Process,

▪ Forward Propagation: During training, an input image

is passed through the network layer by layer, and the

output is computed. Each layer applies its specific

operation (convolution, activation, pooling, etc.) to

transform the input data into higher-level features.

▪ Loss Function: The output of the network is compared

to the true labels using a loss function (e.g., Cross-

Entropy Loss for classification tasks). The loss function

quantifies how well the network is performing.

▪ Backpropagation: The network's weights are updated

to minimize the loss function. Backpropagation

computes the gradients of the loss with respect to each

weight using the chain rule and adjusts the weights

accordingly. This process typically uses optimization

algorithms like Stochastic Gradient Descent (SGD) or

Adam.

3. Advantages,

▪ Feature Learning: CNNs automatically learn features

from the data rather than relying on manual feature

extraction. This makes them highly effective for tasks

like image and speech recognition.

▪ Spatial Hierarchy: CNNs capture spatial hierarchies

and local patterns, which are crucial for understanding

images and other grid-like data.

▪ Parameter Sharing: Convolutional layers use shared

weights (filters) across different parts of the input,

which reduces the number of parameters compared to

fully connected networks and makes them more

computationally efficient.

4. Variants and Extensions,

▪ Deep CNNs: Networks with many convolutional

layers, such as VGG, ResNet, and Inception, which can

learn more complex features and achieve higher

performance on challenging tasks.

▪ Transfer Learning: Using pre-trained CNNs (e.g.,

trained on ImageNet) and fine-tuning them for specific

tasks can leverage existing knowledge and improve

performance with less training data.

▪ Object Detection: Specialized architectures like YOLO

(You Only Look Once) and SSD (Single Shot MultiBox

Detector) extend CNNs for detecting objects within

images and localizing them with bounding boxes.

▪ Segmentation: Networks like U-Net and Mask R-CNN

are used for pixel-wise segmentation tasks, such as

identifying regions of interest within images.

CNNs have revolutionized many fields by providing state-

of-the-art performance on tasks that involve spatial data, and

they continue to be an active area of research and

development.

In machine learning, an optimizer is an algorithm or

method used to adjust the parameters (weights) of a model

in order to minimize the loss function, which measures how

well the model's predictions match the actual target values.

The choice of optimizer can significantly impact the

performance and efficiency of the training process. Here’s

an overview of various optimizers and their roles:

1. Stochastic Gradient Descent (SGD) is a popular

optimization algorithm used in machine learning and

deep learning for training models. It is an iteration-

based variant of gradient descent that updates model

parameters more frequently, which can help to speed up

the training process.

2. The Adam optimizer (short for Adaptive Moment

Estimation) is a widely used optimization algorithm in

machine learning and deep learning that combines the

advantages of two other popular optimizers:

Momentum and RMSprop. Adam is designed to be

computationally efficient, have low memory

requirements, and be well-suited for problems with

large datasets and parameters.

3. The RMSprop (Root Mean Square Propagation)

optimizer is an adaptive learning rate optimization

algorithm designed to address some of the challenges

associated with traditional gradient descent methods. It

is particularly useful in training neural networks and

handling problems with noisy gradients or varying

gradient scales.

4. The Adagrad (Adaptive Gradient Algorithm)

optimizer is an adaptive learning rate optimization

algorithm that adjusts the learning rate for each

parameter individually based on the historical gradients.

This makes it particularly effective for problems with

sparse gradients or features, such as those encountered

in natural language processing and computer vision

tasks.

5. The AdamW (Adam with Weight Decay) optimizer is

an extension of the Adam optimizer that decouples

weight decay from the optimization steps, leading to

improved regularization and generalization. It addresses

a common issue in Adam where weight decay (used for

regularization) is combined with the gradient updates in

a way that can affect the performance of the model.

6. The Adadelta optimizer is an extension of the Adagrad

optimizer designed to address some of the limitations

associated with Adagrad. Adagrad's primary issue is its

aggressive, monotonically decreasing learning rate,

which can lead to very slow convergence or early

stopping. Adadelta aims to mitigate this problem by

using a moving window of accumulated past gradients

to adapt learning rates and maintain more effective

updates over time.

7. The Adamax optimizer is a variant of the Adam

optimizer, designed to handle certain limitations of

Adam and provide additional robustness. It is

particularly useful for training deep neural networks

and works well in scenarios where the gradients are

very sparse or the data is noisy.

8. The Nadam (Nesterov-accelerated Adaptive Moment

Estimation) optimizer is a combination of two

optimization techniques: Nesterov Accelerated Gradient

(NAG) and the Adam optimizer. It merges the benefits

of both methods to improve training stability and

convergence in deep learning models.

Choosing the right architecture and optimizer will improve

the classification accuracy.

2. Method

Our study method is depicted in Fig 1. In that figure, the

input image size is 30×20 in color format, as shown in Fig 2.

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

985

Convolution and max pooling stages are to extract image’s

feature.

The first convolution uses 32 kernels of size 3×3, followed

max pooling of size 2×2, followed the second convolution

uses 64 kernels of size 3×3, and so on. After flatten, i.e.

converting 2D array into 1D array, we use 64 nodes in

hidden layer. Finally we use 2 outputs layer as 2 classes.

(a)

(b)

Fig 1: Architectures we used in this study (a) model-1 (b) model-2

Fig 2: Some of head in INRIA datasets [2]

In Fig 2, the head data captured in various position and pose.

3. Experimental Result

We perform the experiment to classify two classes, head and

no-head class. As images in Fig 2 show some of head data

for head class and another images are no-head class. We

have 4000 image files belonging to 2 classes, using 3000

files for training and 1000 files for validation.

We put the images in directory image:

D:\Dataset\

 Head_OK\

 head_ok(1).png

 head_ok(2).png

 head_ok(3).png

 Head_NG\

 head_ng(1).png

 head_ng(2).png

 head_ng(3).png

We use python language to implement this experiment.

The programming code to create the architecture of model-1

and model-2, as below:

def model_1():

 model = models.Sequential()

 model.add(layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(30, 20, 3)))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Conv2D(64, (3, 3), activation='relu'))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Conv2D(64, (3, 3), activation='relu'))

 model.add(layers.Flatten())

 model.add(layers.Dense(64, activation='relu'))

 model.add(layers.Dense(num_classes))

 print('')

 model.summary()

 return model

def model_2():

 model = models.Sequential()

 model.add(layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(30, 20, 3)))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Conv2D(64, (3, 3), activation='relu'))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Flatten())

 model.add(layers.Dense(64, activation='relu'))

 model.add(layers.Dense(num_classes))

 print('')

 model.summary()

 return model

Model summary of model-1 and model-2 are depicted in Fig

3 and Fig 4 respectively.

Fig 3: Model summary of model-1

Fig 4: Model summary of model-2

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

986

The complete source code are written in Program-1.

Program-1:

print('CNN, part 3 ..\n'*5)

print("ARZETI_Getsuyoubi,12.08.2024; 03:43")

print("Panca" +

 " Mudjirahardjo")

print("")

print("====================================")

print("")

modelKE = input('What model (1,2) : ')

print('')

optim = input('Optimizer: (1)SGD, (2)ADAM, (3)RMSprop,

(4)Adagrad, (5)AdamW, (6)Adadelta, (7)Adamax,

(8)Nadam : ')

if optim=='1':

 optim='SGD'

 print('-- optimizer: SGD')

elif optim=='2':

 optim='ADAM'

 print('-- optimizer: ADAM')

elif optim=='3':

 optim='RMSprop'

 print('-- optimizer: RMSprop')

elif optim=='4':

 optim='Adagrad'

 print('-- optimizer: Adagrad')

elif optim=='5':

 optim='AdamW'

 print('-- optimizer: AdamW')

elif optim=='6':

 optim='Adadelta'

 print('-- optimizer: Adadelta')

elif optim=='7':

 optim='Adamax'

 print('-- optimizer: Adamax')

elif optim=='8':

 optim='Nadam'

 print('-- optimizer: Nadam')

print('')

ep = input('Jumlah epoch (1 epoch 42 sec !): ')

ep = int(ep)

--

import numpy as np

import os

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

from PIL import Image

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

from tensorflow.keras.preprocessing.image import

ImageDataGenerator

from keras.preprocessing import image

--

def model_1():

 model = models.Sequential()

 model.add(layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(30, 20, 3)))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Conv2D(64, (3, 3), activation='relu'))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Conv2D(64, (3, 3), activation='relu'))

 model.add(layers.Flatten())

 model.add(layers.Dense(64, activation='relu'))

 model.add(layers.Dense(num_classes))

 print('')

 model.summary()

 return model

def model_2():

 model = models.Sequential()

 model.add(layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(30, 20, 3)))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Conv2D(64, (3, 3), activation='relu'))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Flatten())

 model.add(layers.Dense(64, activation='relu'))

 model.add(layers.Dense(num_classes))

 print('')

 model.summary()

 return model

--

data_dir = "D:\Datasets"

train_ds = tf.keras.utils.image_dataset_from_directory(

 data_dir,

 validation_split=0.25,

 subset="training",

 seed=123,

 image_size=(30, 20),

 batch_size=20)

val_ds = tf.keras.utils.image_dataset_from_directory(

 data_dir,

 validation_split=0.25,

 subset="validation",

 seed=123,

 image_size=(30, 20),

 batch_size=20)

class_names = train_ds.class_names

print(class_names)

import matplotlib.pyplot as plt

for image_batch, labels_batch in train_ds:

 print(image_batch.shape)

 print(labels_batch.shape)

 break

normalization_layer = tf.keras.layers.Rescaling(1./255)

normalized_ds = train_ds.map(lambda x, y:

(normalization_layer(x), y))

image_batch, labels_batch = next(iter(normalized_ds))

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

987

first_image = image_batch[0]

print(np.min(first_image), np.max(first_image))

AUTOTUNE = tf.data.AUTOTUNE

train_ds =

train_ds.cache().prefetch(buffer_size=AUTOTUNE)

val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

num_classes = 2

--

print("")

print("")

if modelKE == '1':

 model = model_1()

 print("")

 print('---- model ke 1 (satu) ---')

elif modelKE == '2':

 model = model_2()

 print("")

 print('---- model ke 2 (dua) ---')

print('')

print('---- Optimizer: ' +optim)

print('---- training dimulai --- ')

print('')

model.compile(

 optimizer=optim,

 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_l

ogits=True),

 metrics=['accuracy'])

history = model.fit(

 train_ds,

 validation_data=val_ds,

 epochs=ep

)

plt.figure('Model: ' +modelKE +' , optimizer: ' +optim)

plt.plot(history.history['accuracy'], label='train_accuracy')

plt.plot(history.history['val_accuracy'], label =

'val_accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.ylim([0.5, 1])

plt.legend(loc='lower right')

plt.show()

print('')

print(' ----- model evaluate ---- ')

test_loss, test_acc = model.evaluate(val_ds)

A. Model-1 Result

The training and validation accuracy of model-1 with

various optimizers are shown in Fig 5.

Fig 5: Training and validation accuracy of model-1 with various

optimizers

B. Model-2 Result

The training and validation accuracy of model-2 with

various optimizers are shown in Fig 6.

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

988

Fig 6: Training and validation accuracy of model-2 with various

optimizers

Fig 7: Training history of model-2, optimizer: adamax

The overall result of our study is depicted in Fig 8.

Fig 8: Comparison validation accuracy with various optimizers

4. Conclusions

We have studied and evaluated head classification for 2

models and 8 optimizers, using INRIA datasets. In our

experiment result, except optimizers of SGD and Adadelta,

the validation accuracy are good. Their performance are

above 90% as shown in Fig 8. The average training time of

1 epoch is 3 second.

5. References

1. Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of

deep learning: Concepts, CNN architectures,

challenges, applications, future directions. Journal of

Big Data, 2021.

2. Dalal N, Triggs B. Histograms of oriented gradients for

human detection. 2005 IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition (CVPR'05), San Diego, CA, USA. 2005;

1:886-893. Doi: 10.1109/CVPR.

3. Yamashita R, Nishio M, Do RKG, et al. Convolutional

neural networks: An overview and application in

radiology. Insights Imaging. 2018; 9:611-629. Doi:

https://doi.org/10.1007/s13244-018-0639-9

4. Will Cukierski. CIFAR-10 - Object Recognition in

Images. Kaggle, 2013.

https://kaggle.com/competitions/cifar-10

5. Kingma Diederik, Ba Jimmy. Adam: A Method for

Stochastic Optimization. International Conference on

Learning Representations, 2014.

6. Gower RM, Loizou N, Qian X, Sailanbayev A, Shulgin

E, Richtárik P. SGD: General analysis and improved

rates. In international conference on machine learning

(pp. 5200-5209). PMLR, 2019.

7. Mudjirahardjo P. The comparison of convolution and

Max Pooling Process in real-time. International Journal

of Advanced Multidisciplinary Research and Studies

(IJAMRS). 2024; 4(3):1039-1044. ISSN: 2583-049x.

8. Mudjirahardjo P. Real-Time 2-D Convolution Layer for

Feature Extraction. International Journal of Modern

Engineering Research (IJMER). 2024; 14(03):211-216.

ISSN: 2249-6645.

9. Mudjirahardjo P. Real-Time 2D Convolution and Max

Pooling Process. International Journal of Computer

Applications Technology and Research (IJCATR).

2024; 13(06):18-23. ISSN: 2319-8656. DOI:

10.7753/IJCATR1306.1003.

10. Mudjirahardjo P. The Effect of Grayscale, CLAHE

Image and Filter Images in Convolution Process.

International Journal of Advanced Multidisciplinary

Research and Studies (IJAMRS). 2024; 4(3):943-946.

ISSN: 2583-049x.

11. Mudjirahardjo P, Rahmansyah AG, Dianti AS. The

Performance of Convolutional Neural Network

Architecture in Classification. International Journal of

Computer Applications Technology and Research

(IJCATR). 2024; 13(08):115-122. ISSN: 2319-8656.

Doi: 10.7753/IJCATR1308.1011.

12. Elshamy Reham, Abu Elnasr, Osama, Elhoseny

Mohamed, Elmougy Samir. Improving the efficiency of

RMSProp optimizer by utilizing Nestrove in deep

learning. Scientific Reports. 2023; 13. Doi:

10.1038/s41598-023-35663-x.

13. Hassan E, Shams MY, Hikal NA, et al. The effect of

choosing optimizer algorithms to improve computer

vision tasks: A comparative study. Multimed Tools

Appl. 2023; 82:16591-16633. Doi:

https://doi.org/10.1007/s11042-022-13820-0

http://www.multiresearchjournal.com/
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s11042-022-13820-0

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

989

14. Abdulkadirov R, Lyakhov P, Nagornov N. Survey of

Optimization Algorithms in Modern Neural

Networks. Mathematics. 2023; 11:2466. Doi:

https://doi.org/10.3390/math11112466

http://www.multiresearchjournal.com/

