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Abstract 

This article discusses the travelling wave solutions for the 

nonlinear Schrodinger equation (NLSE) through Itô sense in 

optical fiber. He’s semi-inverse approach is used to generate 

some innovative travelling wave solutions. The Ritz 

approach is used to obtain these solutions. We also show the 

effect of the multiplicative noise on the solutions. 

Additionally, some graphs are shown to illustrate the 

dynamical behaviour of solutions using the Matlab packet 

programme. The He’s semi-inverse method actually shows 

accuracy and efficiency in solving a variety of nonlinear 

systems arising in applied sciences. 
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1. Introduction 

Comprehending the dynamic wave patterns associated with nonlinear partial differential equations (NPDEs) is imperative in 

comprehending the fundamental mechanisms of intricate phenomena [1–3]. In actuality, the NPDEs have been the subject of the 

most in-depth study across a variety of applied science domains [4, 5]. Scientists have recently focused their attention on 

nonlinear stochastic partial differential equations (NSPDEs) [6–8]. Numerous nonlinear stochastic scientific phenomena that 

have applications in various fields were produced by the waves, such as fluid mechanics, biomathematics, quantum mechanics 

and many others [9, 10]. Particles moving stochastically in random potentials are essential to many processes. The influence of 

randomness on the dispersion of soliton solutions has been given more and more attention lately. This effect is critical in 

describing many complex phenomena.  

Stochastic calculus is a very vital branch of mathematics that studies stochastic processes and allows for the simulation and 

modelling of random systems [11, 12]. The Brownian motion is a classic stochastic process that is a martingale and a Markov 

process [13]. Brownian motion is a common stochastic process in dispersive systems. The physical mechanism of asset pricing 

is utilised by the Brownian motion process. Indeed, stochastic processes and partial differential equations are inextricably 

linked. Numerous processes rely on particles moving stochastically in random potentials. A stochastic differential equation, 

which, despite its name, is essentially an integral equation, is used to describe this process [12, 14].  

The nonlinear Schrodinger equation (NLSE) essentially describes the dynamics of optical soliton propagation in nano-fibers, 

microelectronics, bimolecular dynamical modes, superfluid, coastal water motions and many others. A dynamical balance 

between the wave’s linear dispersive spreading and nonlinear self-interaction is included in this equation. Because of the 

possible applications of NLSE, soliton solutions have been studied from several viewpoints [15–17]. Moreover, a wide range of 

deterministic and stochastic NLSE frameworks can be used to describe the numerous nonlinear wave events in applied 

research [18–21]. We take into account the NLSE induced by multiplicative noise in Itô sense, which given as follows [22]: 

 

   (1.1) 

 

β  - {0} is the nonlinear coefficient,  is the noise strength. The term  represents the dissipation term & U represents 

the nonlinearity term. The noise  is the time derivative of the Brownian motion Π(t). Here, we implement He’s variations 

technique [23–25] to introduce vital stochastic solution. We also show the noise influence on solitary propagations for this 

equation.  

The rest of the article is structured as follows. Sec. 2 introduces the description of He’s variational principle. Sec. 3 offers some 

new stochastic solutions for NLSE induced by multiplicative noise in Itô sense. Sec. 4 discuss the results obtained and 
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introduced some graphs to illustrate the behaviour of stochastic solution. Sec. 5 demonstrates how the nonlinear parameter 

affects how solutions behave. Finally, in Sec. 6, final remarks are reported. 

 

2. Description of the method 

Consider the NPDEs:  

 

  (2.1)  

 

G is a polynomial in U(x,t) and its partial derivatives. Using the wave transformation 

 

  (2.2) 

 

Converts Eq.(2.1) into the following ODE:  

 

  (2.3) 

 

H is a polynomial in u(ζ) and its total derivatives, while. According to He’s semi-inverse technique [23–25], integrate equation 

(2.3) term by term, gives constant(s) of integration that can be chosen zero for simplicity. We develop the following trial-

function using He’s semi-inverse approach. 

 

  (2.4) 

 

L dependent on u and its derivatives, is the Lagrangian function of the problem as given by Eq. (2.3). 

 

We can find various sorts of solitary wave solutions using the Ritz approach, including u(ζ) = A sech(B ζ), u(ζ) = A sech(Bζ), 

u(ζ) = A tanh(B ζ) and u(ζ) = A coth(B ζ). In this article we search about the solutions in the form: 

 

  (2.5) 

 

A and B are constants to be determined. Substituting from equation (2.5) into equation (2.4) and making J stationary with 

respect to A and B give 

 

  (2.6) 

 

  (2.7) 

 

Solving simultaneously the equations (2.6) and (2.7) we obtain the values of A and B. Consequently, the solitary wave solution 

given by equation (2.5) will be determined. 

 

3. The stochastic solutions 

Using the transformation [22]: 

 

  (3.1) 

k, c, v are constants, gives  

 

  (3.2) 

 

from real part and v = 2k from imaginary part. Using c −  = λ, then Eq (3.2) becomes  

 

  (3.3) 

 

According to the He’s semi-inverse method stated in [23–25], one constructs the following variational formulation from Eq. (3.3) 

as:  

  (3.4) 
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We use the Ritz approach to look for a solitary wave solution in the form 

 

  (3.5) 

 

Where A, B are an unknown constant. Substituting Eq. (3.5) into Eq. (3.4), gives 

 

  (3.6) 

Differentiating J with respect to A, B and putting  = 0 and  = 0 

yields 

 

  (3.7) 

 

  (3.8) 

 

Solving these equations gives: 

 

  (3.9) 

 

Hence the solutions (3.5) takes the form  

 

  (3.10) 

 

Hence the stochastic solution of (1.1) is  

 

  (3.11) 

 

4. Results and Discussion 

Many intriguing complicated phenomena are explained by the solitary wave for the NLSE via the Brownian motion process. 

These phenomena are of great importance in optical fiber communications, deep water, plasma physics, quantum mechanics, 

superfluid, condensed matter physics and many others. The Brownian process is a highly successfull strategy for dealing with a 

wide range of real-world random events. Brownian motion is a fundamental building block of stochastic calculus and the key 

to modelling stochastic systems. The stochastic NLSE equation is transform to nonlinear ordinary differential equations 

through the Π(t) function. Specifically, we use the Brownian motion approach to analyse the NLSE model.  

Most standard articles examined the proposed NLSE model in the deterministic scenario. As opposed to our approach, we 

study this equation in the stochastic scenario, that is, when they are induced by multiplicative noise through Itô sense. We have 

been applying the He’s semi-inverse approach to the NLSE model with multiplicative noise in the Itô sense in order to obtain 

vital hyperbolic secant stochastic solutions. According to Weisstein [26], this sort of solution secant solution occurs in the 

profile of a laminar jet. The He’s semi-inverse approach was used to find some innovative and concise random solutions for 

the NLSE model with multiplicative random parameter. This method’s main advantages over others are that it can solve a 

wider range of physical models and eliminates expensive and time-consuming computations.  

Because of its crucial uses, the impact of a noise parameter on the propagation of soliton solutions has received more attention 

in recent decades. In this sense, the stochastic solutions are important for understanding how NLSE waves propagate when 

they emerge in different physical perspective areas. We also drawn some corresponding profile pictures in order to show the 

dynamical behaviour of these solutions. Fig 1 depicts the dynamical behaviour of solution (3.11) in the deterministic (  = 0) 

and stochastic (  = 2) cases. This graphic shows that the efficiency of randomization and the capacity to achieve rapid wave 

collapse increase with increasing noise term . The impact of the intense randomness coefficient on phase shift, band width, 

structure and amplitude is illustrated in Figs. 2, 3. Fig 4 illustrates the envelope waves for the presented solution.  
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5.The influence of β 

One of the primary objectives of this article is to illustrate the impact of β on the properties of the wave modes. The wave 

images of solution (3.11) for a range of β values are displayed in Fig 5. It is discovered that increasing β decreases the 

amplitude of the optical solution (3.11) with no change in direction or space. Moreover, there is no variation or reversal in the 

amplitude. 

 

 
 

Fig 1: Effect of stochastic refinement on solitary wave solution (3.11) 
 

 
 

Fig 2: Trajectory of solution (3.11) with different values of t 
 

 
 

Fig 3: Trajectory of solution (3.11) with different values of  
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Fig 4: 3D plot for solution (3.11) 
 

 
 

Fig 5: Variations of solution (3.11) with β = 1, 2, 3, 4, 5 
 

6. Conclusions  

We have investigated the nonlinear Schrodinger’s equation induced by multiplicative noise through Itô sense, utilizing He’s 

semi-inverse technique. We employ this approach to generate some novel travelling wave solutions. The key merits of this 

technique over others are that it averts time-consuming and expensive computations and has a wider range of applications for 

solving diverse sciences difficulties. We depict the effect of the multiplicative noise on dynamical behaviour of the solutions. 

We also depicts effect of the nonlinear coefficient on the behaviour of the solution. Finally, the He’s semi-inverse approach is 

applicable to other complex models, therefore it will be used in future studies.  
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