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Abstract 

This paper introduces a simplified methodology for tackling 

the control problem that arises in the context of the rotating 

inverted pendulum. The rotating inverted pendulum (RIP) is 

a complex system that has attracted considerable interest in 

several academic disciplines due to its complicated structure 

and nonlinear properties. The control approach may be 

decomposed into two distinct subproblems. The first 

subproblem pertains to the management of the pendulum's 

swing-up, which is achieved by the use of a PD cascade 

approach. The second subproblem concerns the 

implementation of a fuzzy-PD regulator for the purpose of 

balancing and stabilizing the whole system. The transition 

between these subproblems is also considered. The 

simulation and analysis of the plant, swing-up control, and 

stabilizing system are conducted inside the computational 

framework of Matlab/Simulink. 
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1. Introduction  

The inverted pendulum, regardless of its rotating nature, has been extensively examined in several domains including both 

linear and nonlinear control. The study examines a difficult underactuated mechanical system known as the rotating inverted 

pendulum. The study of this problem in the field of control theory involves looking at it from a number of different angles, 

such as the analysis of multivariable systems, non-minimum phase processes or unstable systems, complex non-linear 

dynamics, modeling uncertainty, and resiliency, to name a few [1, 2]. Applications of the RIP, or recursive identification and 

parameter estimation, are not limited to the aforementioned fields; position control, robotics, and aerospace vehicle control are 

just a few more. In order to stabilize systems and implement swing-up control, several different control algorithms have been 

proposed. In scientific literature, the two subproblems are often addressed independently via the use of traditional PID 

controllers, resilient and adaptable techniques, or intelligent systems. Several writers integrate disparate methodologies into a 

hybrid control system.  

In this study, a traditional proportional-derivative (PD) algorithm is proposed for the control of the rotating inverted pendulum 

during the swing-up phase. Furthermore, enhancements are made to optimize the algorithm's performance by reducing the 

swing-up time. The inclusion of an impulsive control action in the PD algorithm leads to a significant reduction in swing-up 

time, as shown in the aforementioned articles. Furthermore, the researchers used robust and nonlinear techniques in order to 

achieve the swing-up of the robotic inverted pendulum (RIP). Another approach, referred to as energy-based control, fails to 

account for the response torques exerted by the pendulum on the arm [3, 4]. Additionally, a comprehensive study is performed to 

examine the stability characteristics of the energy-based control approach. The use of intelligent methodologies in the domain 

of pendulum dynamics has shown the inherent advantages of attaining an upright stance [5, 6]. 

One often used approach for addressing the stability issue of an inverted pendulum involves simplifying the system by 

linearizing it around the desired equilibrium point [7]. The use of the linearized model may be employed in combination with 

either the pole placement strategy or the linear quadratic regulator (LQR) to attain stability. Considering the intrinsic attributes 

of the botanical organism, including the presence of uncertainties and nonlinearities, it might be more beneficial to investigate 

the use of modern systems. One instance illustrating this concept is the development of a fuzzy controller, which incorporates 

five distinct membership functions for both input variables: the angle of the pendulum in relation to its upright position, as well 

as the angular velocity of the pendulum. The present study introduces a unique version of the fuzzy controller, which integrates 

a straightforward fuzzy logic controller (FLC) with a control rule table that has the skew-symmetric quality [8, 9, 10]. This 

suggested modification maintains the equivalent performance levels as the previous version. This paper presents evolutionary 

methodologies for the design of a rotating inverted pendulum controller. Genetic algorithms (GA), particle swarm optimization
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(PSO), and ant colony optimization (ACO) represent a 

subset of the approaches examined within this particular 

framework. 

The discourse also encompasses the examination of the 

switching control approach. The use of energy is regarded as 

the appropriate condition for transitioning from the swing up 

mode to the stabilization phase [11]. 

This paper presents a compelling proposition that offers a 

comprehensive solution to address the dual challenges of 

control in a genuine inverted pendulum system via the use 

of a single fuzzy rule foundation. By combining two 

different fuzzy controllers into a single, the authors were 

able to effectively minimize the number of tuning 

parameters needed. Altering the mode of operation from 

swing up to stability is possible by altering the functional 

signals and modifying the gains. 

The primary aims of this work are to identify an accurate 

model for the RIP (Resonant Inductive Power transfer) and 

to develop, simulate, and analyze the control mechanisms 

associated with the RIP. The control approach involves the 

use of a swinging-up strategy to elevate the inverted 

pendulum and subsequently achieve stability in the upright 

position. In the first phase, the primary objective of the 

swing-up control issue is to enable the pendulum to 

transition from a downward orientation to an upright 

configuration. The process of providing the DC motor, 

which is responsible for propelling the mechanical system, 

with an appropriate voltage of sufficient magnitude and 

polarity is how this is accomplished. During the second 

stage, the balance/stabilizing control system is introduced 

when the pendulum reaches an angular displacement of 20° 

from its final vertical position. Despite the presence of 

several prospective resolutions, it is crucial to tackle these 

tasks in a fundamental manner to provide a basis for 

eventual practical implementation [12, 13]. 

The ensuing portion of the work is organized in the 

following fashion. This paper presents a comprehensive 

explanation of the mathematical model of the RIP system 

and its related open loop responses in Section II. In this 

study, Section III provides a comprehensive exposition of 

the swing-up control technique used for the spinning 

inverted pendulum. The control strategy used in this 

technique involves the implementation of a cascade control 

system, which relies on conventional proportional-derivative 

(PD) regulators. This section also covers the 

balance/stabilizing control system that employs a fuzzy-PD 

methodology. The results of the simulation are outlined in 

Section V, while the research finishes with a comprehensive 

analysis of the ramifications [14]. 

 

2. The Rotating Inverted Pendulum Model 

Inverted Pendulum's Rotation Explained 

The Furuta pendulum, sometimes referred to as the inverted 

rotating pendulum, is equipped with a servo motor system 

which enables its rotational movement. This system is 

responsible for driving a separate output gear, which 

operates independently. The experimental setup consists of a 

rotating pendulum arm, as seen in Fig 1(a), with a radius 

denoted as r and a mass denoted as . This arm is attached 

to the gear's output, and its pivot point, P, is connected to a 

pendulum of length 2l and mass m.  The servo motor is 

responsible for enabling the pivot arm to rotate within the 

horizontal plane XY. The pendulum is deliberately 

manipulated to undergo oscillations inside an XZ plane, 

which is consistently maintained in a perpendicular 

alignment with the rotating arm. The primary goal is to 

successfully sustain the pendulum in a vertical position. 

The inverted pendulum is shifted from its upright position in 

the simplified schematic design seen in Fig 1(a). 

Displacement is denoted by , while the angle θ of the 

pivoting arm is indicated by. In addition, the angular 

velocities of the inverted pendulum and the pivot arm are 

represented as "α dot" and "θ dot," correspondingly. The 

dynamics of the inverted pendulum system are characterized 

by the parameters " " and "θ", which are generalized 

coordinates. 

The physical rotating inverted pendulum system, as seen in 

Fig 2(b), is constructed using aluminum material with 

certain dimensions and mass properties. The length (l) of the 

pendulum is 0.14 units, while the radius (r) measures 0.115 

units. The mass (m) of the pendulum is 0.08 units, and the 

combined mass of the pendulum and the rotational axis ( ) 

is 0.35 units. 

 

 
 

Fig 1: Two representations of the RIP system: (a) a schematic 

showing the setup (pendulum in an upright position); and (b) a 

physical depiction of the system (pendulum in a downward 

position). The user supplies screenshots 

 

The RIP as a Dynamic Model 

The dynamic model of the inverted pendulum is derived by 

decomposing the plant into two distinct planes. In the first 

instance, we have the horizontal XY plane, which stands in 

for the fulcrum. The second plane is the XZ vertical plane, 

which represents the rotational movement of the pendulum 

[15]. Newton's laws of motion in the X and Z axes, and 

Euler's equations of rotational motion at the axes G and P, 

are used to derive the equations of motion for the 

mechanical system. The model's dynamics are described 

using equations that are very non-linear. 
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The dynamic model (1) incorporates commonly 

acknowledged assumptions, such as the lack of friction and 

the existence of rigid objects. Furthermore, it provides a 

representation of the velocity of point G, which represents 

the center of gravity of the pendulum, with respect to point 

P. In addition, the model offers a depiction of the precise 

velocity of point G located on the pendulum. The equation 

denoted as (1) incorporates the variables , , , , , 
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and which represent the forces, torques, and moments of 

inertia. The symbols  and  denote the equivalent 

inertia and viscous friction of the arm and pendulum, 

correspondingly. The specific values applied to  and  

are 0.0034 kg.  and 0.005, respectively. The variable g 

represents the gravitational acceleration, while T defines the 

input torque. 

The mechanical system derives its kinetic energy from the 

rotational motion of the arm. The rotational movement of 

the arm is powered by a direct current (DC) motor, and the 

magnitude of the applied torque may be determined by 

analyzing the analogous model of a DC motor. The direct 

current (DC) motor has certain electromechanical properties, 

including the motor resistance ( ) of 13Ω, negligible 

motor inductance , motor torque constant ( ) and 

electromotive constant ( ) of 0.007N.m/Amp and 

0.007V/rad/sec respectively, moment of inertia of the motor 

( ) of kg. , and the voltage delivered to the DC 

motor ( ). 
 

 

t t m
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The Inverted Rotating Pendulum as a Linearized Model 

Using the small angle formula in the model (3), we get a 

linear approximation to the non-linear system equations (1) 

and (2). 
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Several new notations are included in (3). 
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Assuming that the starting circumstances are zero, the 

plant's transfer function defines the relationship between the 

amount by which the pendulum deviates from its ideal 

position and the input voltage delivered to the motor. Since 

obtaining the pendulum angle  as the necessary output 

from the plant is the primary goal of the linearized system 

(3), the pivot arm position θ was first eliminated. The 

Laplace transform was then applied to the data. Both the 

pole and the zero at the origin of the transfer function have 

been removed. 
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Response in an Open Loop 

Both the non-linear and linearized models were run in 

Matlab/Simulink, a modeling and simulation environment. 

Fig 2 displays a comparison of the two systems' open-loop 

responses. Before releasing the pendulum into free fall, we 

start by giving it a little nudge of 0.0001 radians by holding 

it upright. The motor receives no power at all throughout 

this whole duration. The simulation results show that the 

linear model accurately represents the pendulum's motion up 

to an angle of 20 degrees, which occurs during the first 1.2 

seconds. Subsequently, the model deviates from the 

observed motion. Additionally, the system exhibits 

instability and non-linearity. 

 

 
 

Fig 2: It is the sum of two angles: (a) the arc of the pivot arm, and 

(b) the arc of the inverted pendulum 

 

3. Controlling the Inverted Pendulum's Swing Up and 

Keeping it Balanced 

As stated in the introduction of the article, the major 

objective of the global control problem is to facilitate the 

transition of the pendulum from its stable downward 

position to the precarious upright position, and afterwards 

maintain its equilibrium in that state. These jobs have the 

capability to be completed either via a single controller or 

by using many systems. From this particular standpoint, the 

primary concern may be separated into two separate control 

subproblems: swing-up control and balance/stabilizing 

control. An additional crucial subject to contemplate is the 

determination of the suitable criteria for switching between 

these two control strategies. 

The majority of scientific literature references the 

involvement of a third controller, often referred to as the 

switching/catching controller, in the switching process. The 

whole control process exhibits greater resilience when 

subjected to disturbances if the catching controller is able to 

effectively transition between swing up control and 

balancing control. Certain writers have used an energy-

based mode switching control strategy in order to enhance 

the performance of a system. This is accomplished by 

monitoring the angle of a pendulum and comparing the 

system's energy with a predetermined threshold value, 

denoted as . Several writers use a fusion approach, mixing 

dynamic programming with control strategies based on 

reinforcement learning. However, dynamic programming 

may need a prohibitive amount of processing power. 

It was determined that the phrase "switching criterion" was 

more suitable than the previous work "switching/catching 

controller" for the purposes of this investigation. The results 

of the simulations and tests show that the RIP system is 

rather robust. This is shown by the fact that its performance 

is unaffected by the switch mode's implementation, even at 

the fixed pendulum angle of 20 degrees. If the specified 

condition holds true, the switching criteria will prioritize the 
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balancing control; otherwise, the controller will continue to 

function in the swing-up mode. In the event that the 

Restoring Inverted Pendulum (RIP) system experiences a 

disturbance that disrupts its equilibrium and causes the 

pendulum to deviate from its vertical position by an amount 

beyond the predetermined threshold value, it is necessary for 

the criteria to activate the swing up control mechanism in 

order to restore stability. 

 

The Implementation of Swing-up Control with 

Traditional Proportional-Derivative (PD) Controllers 

The arm may be swung away from its fixed downward 

posture like a pendulum thanks to the swing-up controller. 

As the DC motor is supplied with electricity, and a sufficient 

force is applied to the arm to produce its reciprocal motion, 

energy is gradually transferred to the rotating inverted 

pendulum (RIP) system. Consequently, the pendulum may 

be elevated to the unstable state by swinging motion. 

Many different control algorithms may be used to the 

problem of swing up control. Trajectory tracking, energy-

based methods, the rectangular reference input swing-up 

type, and adaptive or intelligent processes are all examples. 

Due to its straightforward design, potent performance, and 

simple tuning process, a positive feedback proportional-

integral-derivative (PID) controller is advocated for use in 

this paper. As can be seen in Fig 3, the block control 

diagram consists of two loops. In order to attain equilibrium, 

the pendulum must swing back and forth, with the inner 

loop responsible for controlling the arm's location and the 

outer loop determining the appropriate trajectory for the 

arm's angle. 

 

 
 

Fig 3: The RIP swing-up control as a block diagram in Simulink 

 

A method for control based on proportional-derivative (PD) 

control is developed so that the servo arm can precisely 

track the desired position. 
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The PD controller provides the motor with a voltage input 

that enables the arm angle  to follow the desired position 

. The tuning parameters  and  for the typical PD 

controller have been established at 100 and 2.5, respectively, 

in order to get the necessary performance levels inside its 

internal feedback loop. 

A positive feedback proportional-derivative (PD) control 

loop was utilized to increase the amplitude of the 

pendulum's swing in the outer loop. The presence of a 

positive feedback loop in this system leads to an 

amplification of energy supplied to the pendulum, resulting 

in a destabilizing effect. This occurs due to the inherent 

stability of the pendulum's downward position. The tuning 

parameters  and  significantly influence the smooth 

operation of the pendulum. The parameters, namely the 

proportional and derivative constants, may be adjusted to 

modify the level of "positive damping" inside the system. 

Furthermore, it is essential to restrict the orders produced by 

the swing-up controller, namely the target angle of the pivot 

arm, within a range that includes both positive and negative 

180 degrees. The incorporation of this preventive measure is 

considered crucial in order to minimize the potential hazards 

arising from potential collisions between the arm and other 

hardware components. 

Equation (6) represents the swing-up proportional-derivative 

(PD) control law. 
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The constants of proportion and differentiation have been 

set as 0.15 and 0.04, respectively. To optimize the 

performance of the derivative constant , it is necessary to 

strike a balance between enhancing the response time and 

minimizing the amplification of noise. 

 

The Use of a Fuzzy-PD Controller for Balance and 

Stabilization Control 

The stabilizing controller's job is to keep the pendulum from 

falling as it swings closer and closer to a vertical position. 

State feedback, linear quadratic based on the linearized plant 

model, and pole placement are just a few of the algorithms 

that may be utilized in this situation. A fuzzy-PD controller 

was chosen as the ideal method to handle the stabilization 

problem because of the Rotary Inverted Pendulum's (RIP) 

unique properties, such as its unstable upright position, non-

linearities, and modeling mistakes. 

Fig 4 displays the block diagram representing the swing-up 

control. 

 

 
 

Fig 4: The RIP stability and balance control system as shown in a 

Simulink block diagram  

 

The construction of a fuzzy controller for the stabilization 

issue involves the creation of four key components: the rule 

base, the inference engine, the fuzzification interface, and 

the defuzzification interface. These components together 

contribute to the functionality and operation of the fuzzy 

controller. 

The variables used by the fuzzy system are the angle error 

, which is measured with respect to the upright position 

as the reference, and the change in angle error . The 

variable  denotes the output of the fuzzy system. The 

range of the variables was extended to include the interval [-

1, 1], and the process of normalization was accomplished by 

applying scaling gains ( , , ). The use of a consistent 

strategy for the membership functions will enhance the 

seamless integration of the controller in future endeavors. A 

set of 53 rules was developed by using a technique that 

included the use of five membership functions for each of 

the three fuzzy variables, resulting in a total of 26 

combinations. The membership functions were designed to 
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be symmetric and triangular in shape, with a 50% overlap 

(as depicted in Fig 5 (b). Consequently, it is possible for a 

maximum of four rules (i.e., ) to be active simultaneously. 

A set of rules in the form of IF-THEN statements is used as 

the basis for the fuzzy controller's decision-making. The 

aforementioned criteria were established by a heuristic 

approach, utilizing the existing information pertaining to the 

plant. The rule table obtained is shown in Fig 5 (a). 

The min-max inference engine was selected for its ability to 

analyze premises using the maximum operator for logical 

OR and the minimum operator for logical AND. Each rule's 

conclusion, indicated by the keyword "THEN," is likewise 

determined by some kind of minimal requirement. The 

ultimate decision on the set of active rules is made by 

selecting the highest value from the several fuzzy sets under 

consideration. 

The center of gravity (COG) defuzzification approach is 

used in order to get a precise result. The crisp value 

represents the output of the controller. 

 

 
 

Fig 5: (a) Table of fuzzy rules for the controller; (b). Variable fuzzy sets 

 

4. The Outcomes of the Simulation 

In order to investigate the control of the rotating inverted 

pendulum via simulation, the systems were mathematically 

represented and implemented using Matlab/Simulink. The 

outcomes of the simulation are visually shown in Fig 6. 

The inner loop of the swing-up control system, represented 

by the pivot position controller, was the first subject of 

analysis. Fig 6 (a) is a schematic showing the responses of 

the closed-loop system to a 10° step reference. The 

measured response shows an overrun of 4%, with the first 

peak appearing after 0.1 seconds. The position controller 

works as expected within the specified limits. 

Fig 6 (b) shows that the intended goal of the swing-up 

control system has been met. Proof of this may be seen in 

the upward motion of the pendulum, as shown by the arc of 

the angle over the -20° mark, which happens after around 

4.5 seconds. As was previously indicated, an impulsive 

control mechanism may shorten the swing-up time and 

increase the system's overall energy. 

 

 
 

Fig 6: (a) signals associated with arm position control, (b) signals 

associated with swing-up control, and (c) signals connected with 

balance/stabilizing control are all examples of the kind of signals 

that may be received by the various control modules 
 

5. Conclusions 

This article gives a scholarly investigation into the control 

mechanisms used in managing the rotating inverted 

pendulum (RIP). The task of managing RIP control may be 

further broken into many subtasks. Initially, the pendulum 

must be elevated from its state of equilibrium, sometimes 

referred to as the "downward position." Two regular 

proportional-derivative (PD) controllers were implemented 

as part of a cascade control strategy for the experiment. 

Although the outside loop uses a swing-up controller, the 

inner loop uses a proportional-derivative (PD) position 

controller for the pivot arm. An approximate time of 4.3 

seconds is all that is needed to complete the activity. The 

implementation of the balance/stabilizing control is initiated 

by the fuzzy-PD system at this point. The implementation of 

the present system was designed with careful consideration 

of the distinct attributes of the RIP system, including non-

linearities, modeling mistakes, and instability. The system 

was thoroughly examined, even in scenarios where minor 

impulse perturbations were present. To attain global stability 

for the control process as a whole, an endeavor was 

undertaken to include a simplified switching criteria that is 

contingent upon a predetermined threshold value for the 

angle of the pendulum. The control techniques shown in this 

work have the potential to be applied to other complex 

systems. 
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