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Abstract 

Proving the uniqueness of the solutions after obtaining them 

requires complex conditions, especially in the size spaces. 

This paper proves the equivalence of Cauchy sequences that 

contains the solution's existence in the sizes spaces, as a 

prerequisite for proving the uniqueness of the resulting 

solutions. 
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1. Introduction and Preliminary 

Studies of the existence of the solution to the differential, integral, or boundary equations in various sciences is a fertile field in 

which researchers present their results continuously and often use fixed-point theorems to prove the existence of the solution, 

see [2], [5-7], [12-15]. This does not necessarily mean proving the uniqueness of the solution.  

Sizes spaces are one of the spaces that are avoided by authors as a result of their difficulty and breadth. It is difficult to identify 

a point in sized spaces and then prove that this point is unique. But if we can prove the equivalence of the sequences, then we 

can prove the uniqueness of the solution based on this paper. H. Gunawan, [10] established the idea of sizes spaces by 

introducing the definition of -normed space. Recently, Raj et al. [16] proved some properties in such space.  

 

Definition 1.1. [16] A sequence  in an -normed spaces  is said to be Cauchy if 

 

   (1.1) 

 

for all  

 

Recent papers that discuss of the sizes spaces and their characteristics, we refer to [1], [3, 4], [8, 9], [11].  

The main result of this paper is to explore the conditions that make possible the uniqueness of solutions in sized spaces.  

 

2. Main Results 

Definition 2.1. -Cauchy sequences  in an linear -normed spaces  are said to be equivalent, 

denoted by  if for every neighborhood H of 0 there is an integer  such that  

implies:  

 

 ,  (2.1) 

 

with respect to the independent set  in . 
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Theorem 2.1. For every  if and only if  

 

 .  

 

Proof  

Let  then for every neighborhood  of  there is an integer  such that  implies 

that (2.1) is satisfies for every , using Definition 1.2. to getting  which 

is proof the part if. To proof the part only if: let , concluding  are 

-Cauchy sequences in  then  for every , such that  a 

neighborhood of  and , when there exist an integer   

 

Hence,   

 

Theorem 2.2 If  is equivalent to ,  is equivalent to  and  is equivalent to  in then 

for all   and . 

1.  is equivalent to .  

2.  is equivalent to ,…,  is equivalent to  

 

Proof  

   

   

   

   
 

When  Using Theorem 3.1 to obtain . Then (i) is proved. To prove 

(ii), taking  where  

 

   

  

   
 

Hence, ,  and . 

 

Theorem 2.3 The relation  on the set of -Cauchy sequences on  is equivalent relation in .  

Proof. 

i) Since, , then the reflexivity property is satisfied.  

ii) For any permutation , in  we get that  then the symmetry 

and transitive properties have been fulfilled.  

Hence,  is the equivalent relation on .   

 

3. Paper Significance 

This paper presents a study through which we can prove the uniqueness of the solutions in the sizes spaces without the need for 

complex additional conditionals.  

 

4. Conclusion 

Proving the equivalence of Cauchy sequences is important in the size spaces so that we can show that the fixed points are 

unique using the Banach contraction principle. 
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