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Abstract 

Herbicide use is a common practice for managing weeds in 

wheatgrass fields, but it can be costly, raise ecological 

concerns, and lead to herbicide resistance. A potential 

solution to this problem is using machine learning models 

for precise weed identification. This study provides an 

overview of the key ML techniques utilized in wheatgrass 

weed identification, including classifying and detecting 

objects. A performance evaluation measure, such as 

accuracy in classification and score F1, were also discussed. 

Furthermore, potential areas for future research are 

highlighted, such as increasing a data capacity through 

enhancing data, leveraging passing learning, and enhancing 

comprehension of artificial neural networks to avoid 

excessive fitting and boost transparency. Typically, digital 

images are utilized as input data in ML weed identification, 

although hyperspectral data is sometimes employed. The 

majority of current studies utilize support vector machines 

and neural networks for this purpose. 
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1. Introduction  

Zea mays, commonly known as corn, is widely consumed globally, including in the United States. During 2020-2021, the U.S. 

alone accounted for 26% of the world's corn consumption [1]. As the largest producer of corn in the universe, In 2019-2020, the 

United States accounted for a total of 345 million tonnes of extraction [1]. The exceedingly productive grain maize, is utilized 

for a variety of commercial and agricultural applications, including feeding animals, sugar substitutes and biofuels. In relation 

to the USDA's report on US corn cultivation in 2020, a significant portion (46%) was utilised for feeding animals, 27% was 

utilized for biofuel production, and the remaining 18 percent went abroad primarily to South Korea, Colombia, Mexico, and 

Japan. Japan and South Korea depend heavily upon the U.S. to provide animal nutrition based on corn. The remainder of the 

output (approximately 9%) had been utilized to produce merchandise like sweeteners, corn syrups, cereals, corn starches, and 

liquids [2]. Recently, corn-based items such as icing supplies, inhibitors of corrosion, and coatings have been created, which 

could increase corn's local market position. Corn, plays the crucial role in the U.S. economy, as evidenced by the Corn 

Refiners Association study that found that the corn refining industry alone contributed to an economic output of 47.5 billion 

dollars in the U.S. in 2020 [3]. 

One of the obstacles to improving corn production is the difficulty in controlling the growth of weeds. Not only do these plants 

compete with maize for nourishment and supplies, but they to bring viruses, dangerous microbes, and additional virulent 

microorganisms, leading to substantial yield reductions [4]. A study based on the USDA-NASS 2014 corn yield report found 

that weed interference in from 2007 until 2013, maize production led to an annual yield loss of 50 percent and an annual 

economic loss of $26.7 billion. Weed control is often accomplished at the time applying pesticides or elimination by thermal, 

mechanical, or electrical processes. Among both of these options, a use of pesticides constitute the most common, but it comes 

with some significant drawbacks. Applying herbicides to a full field can be extremely costly, according to the 2021 University 

Harvest Expense and Yield Guide, the average cost per acre is approximately $60, corresponding to 10% of the total 

anticipated maize sales [5]. The overuse using pesticides can have negative effects on the environment, including soil fertility 

and aquatic ecosystems, as well as being harmful to human health. Additionally, weeds have been known to become resistant 

to herbicides over time. To address these issues, targeted herbicide application or manual weed removal is necessary, but 

identifying weeds can be a challenging task. This is where machine learning (ML) techniques can be useful, as they provide 

precise weed identification and allow for automation of weed control and management. However, manual identification of 

weeds is not always feasible due to the scale of the problem. This study provides an overview of the various machine learning 

(ML) methods that have been used for herb identification in fields corn. A paper also provides technical information such as 
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the type of ML task solved, the category of herbs targeted, 

the facts utilized, and error metrics used to measure 

performance. The ML methods are classified into three 

major groups: Support Vector Machines (S.V.M), Networks 

Neural, Other. Division 3 covers SVM-based approaches, 

Division 4 covers Network Neural -based methods, Division 

5 delves into random algorithms that have been used in the 

past for weed identification in corn fields. Division 6 

highlights the role of Information in ML achievement and 

metrics utilized for evaluating techniques. Lastly, Division 7 

summarizes the study's conclusions and outlines additional 

studies using machine learning (ML weed identification. 

The first table contains the acronyms utilized in the present 

investigation. 

 
Table 1: A list of acronyms 

 

Acronyms Explanation 

AI Artificial intelligence 

ANN Artificial neural network 

ASM Active shape modeling 

BP Backpropagational network 

CSM Color Co-Occurrence Method 

CDC Canonical Discriminant classification 

CNN Convolutional neural network 

DA Discriminant analysis 

DHT Double hough transform 

DT Decision tree 

DWT Discrete wavelet transform 

EOH Edge of histogram 

FFT Fast fourier transform 

FIP Fast image processing 

FLDA Fisher Linear Discriminant analysis 

GA Genetic algorithms 

GAN Generative adversarial networks 

GLCM Gray-Level Co-Occurrence Matrix 

GMM Gaussian mixture model 

HIS Hue, intensity, saturation 

HT Hough transform 

IOU Intersection over union 

KNN K nearest neighbor 

LBP Linear binary pattern 

LDA Linear Discriminant analysis 

LIDAR Light detection and ranging 

LMC Linear margin classifier 

LR Linear regression 

LS-SVM Least square-support vector machine 

MOG Mixer of gaussian 

ML Machine learning 

NDVI Normalised difference vegetation index 

PCA Principal components analysis 

PCANet Principal components analysis network 

PDF Probability density functions 

PNN Probabilistic neural network 

RBF Radial basis functions 

RCRD Robust crop row detection 

RF Random forest 

RGB Red, Green, Blue 

ROI Region of interest 

RVI Ratio vegetation index 

SMH Shape matrix histogram 

SOM Self-organazing map 

SPCA Sparse principal components analysis 

SVDD Support victor data description 

SVM Support vector machine 

SWLDA Stepwise linear Discriminant analysis 

VI Vegetation indices 

WIR Weed infestation rate 

2. Machine Learning 

Artificial Intelligence (AI) has a branch known as Machine 

Learning (ML) that aims to support computers in 

discovering the connections a relationship within inputs and 

outcomes in a particular data set, leading to precise forecasts 

[11]. Algorithms for ML utilize techniques from statistics to 

gain knowledge about data that is accessible without explicit 

instructions for programming [12]. The standard ML 

framework has a workflow as shown in the first figure, 

which includes the following steps: 

▪ Information Collection - collecting Information from 

various sources such as Information sets that are open-

source., sensors, etc. 

▪ Information Preparation - washing and transforming the 

information to make it appropriate for the model. 

▪ Dataset Generation - dividing the classification of data 

into testing, training, and validation collections. 

▪ The process of training the model includes using the 

instruction set to teach the model, allowing it to 

understand the suitable output-input connections. 

▪ Applying the model that was trained to the test set and 

assessing its effectiveness via metrics for accuracy. 

▪ Model Implementation-providing model access to 

consumers through software and web applications. 

During the development phase of an algorithm, variations in 

patterns of data as time passes can negatively impact its 

performance. Making it necessary to update the model and 

repeat the information collection stage. Additionally, 

adjusting the worth of the hyperparameters, which is 

established prior to the learning procedure, can lead to 

improved results during the evaluation stage. The following 

serves to regulate the model's general conduct. The 

placement of the model has evolved a crucial aspect of 

modern machine learning practices, with a focus on the 

practical application of ML models. MLOps provides a 

comprehensive method for deploying deep learning models, 

and further information can be found in references [6, 7]. ML 

can also be classified into different categories based within 

learning of the program's possible developing response type. 

In guided instruction, the ML algorithms are trained using 

labeled information to conduct duties such as regression and 

classification analysis. This type of data includes both the 

input features, referred to as causal factors, and the 

corresponding target responses or outcomes, known as 

variables for output. The objective of classroom supervision 

understand the connection within their input characteristics 

and variables that output, in order for future, unseen input 

features can be predicted with accuracy. Precision 

agriculture offers various applications for supervised 

learning as highlighted in [8]. 

Unsupervised machine learning (ML) involves training 

algorithms on datasets that are not labeled. The aim of this 

type of ML is to discover patterns and connections in the 

data. Some common unsupervised ML techniques include k-

means clustering, PCA, and Gaussian mixture models. The 

implementation of unsupervised acquiring precision industry 

may be seen in the work of Davis et al [9]. 

Reward training constitutes an automated learning subfield 

concerned with consecutive making choices in order to 

attain a specific target. The objective of reinforcement 

learning is for a computer agent to navigate its environment 

and make choices that result in maximum incentives. 

SARSA and Dense Q A system reinforcement learning 

algorithms. There are resources in [10] for demonstrating the 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies    www.multiresearchjournal.com 

232 

application of reinforcement learning to precision 

agriculture. Within the following three parts, we give a few 

words overview widespread ML techniques while 

thoroughly examine their utilization in the detection 

vegetation in maize crops. 

 

 
 

Fig 1: Flowchart of Machine Learning Model Processes 
 

3. Support Vector Devices 

One of the supporting product devices representing the 

linear classifier was first introduced by [11]. The method 

works by creating hyperplanes to separate data into different 

classes. The defining characteristic of SVMs is the search 

for a hyperplane is a structure that optimizes the gap 

between nearest data points of each class, known as the 

support vectors. This maximization results in a reduction of 

generalization error. There are two varieties of edge used in 

SVMs: Both firm and flexible margins. A firm margin is 

utilized while the information is uniformly distinct and free 

of disturbance. But this can lead to overfitting, so a soft 

margin approach is used to handle noisy data. The soft 

margin allows some overlap between classes by down 

weighting the importance of overlapping data points. This 

approach was introduced by [12] and was applied successfully 

to recognize handwritten images. Support Vector Devices 

(SVD) were further enhanced by [13] to handle non-linear 

classification problems through the utilization of the "Kernel 

Trick." This approach involves transforming inputs into a 

higher-dimensional space, allowing linear hyperplanes to 

effectively separate the data. SVMs have been expanded to 

also address regression and multi-class classification issues 

[14]. With its ability to deliver dependable results in tasks 

such as digital image classification, text categorization, and 

character recognition, SVMs have become a go-to tool in AI 
[12, 13, 14]. In precision agriculture, the use of SVMs is also 

prevalent for identifying weeds [15]. Y. Karimi [16] employed 

the use of SVMs with a radial basis function (RBF) kernel 

for detecting prevalent grassy weeds nitrogen toxicity in 

maize using hyperspectral data. This data comprised of 72 

narrow bands, ranging from 408.73 to 947.07 nm, with weed 

treatment as the major factor and three rates of nitrogen are 

used as sub-factors. The design SVM achieved a 

classification precision is 69.2 percent considering the 

combined vegetation control and rates of nitrogen, but this 

improved to over 80% when vegetation management and 

rates of nitrogen have been assessed individually. 

In another study, Wu and their colleagues showed the 

application of using shape characteristics as sources for 

SVM model to classify maize and vegetation seedlings [17]. 

The researchers had a collection of 64 photos in RGB, with 

40 being employed for teaching and twenty-four test. The 

quantity of photos for each type of seedling did not 

disclosed. They transformed RGB photo into HIS (Hue, 

Intensity, Saturation) space as they believed it would result 

in better features. Based on these photos, they extracted leaf 

form variables such as Roundness an R, M, L. These criteria 

seemed then utilized as inputs for the SVM approach, 

sigmoid, RBF, and polynomial kernel functions are utilized. 

The results showed that the RBF-SVM had a classification 

accuracy of 96.50%, sigmoid-SVM had 67.67%, 

polynomial-SVM had 90.00%, and ANN (Artificial Neural 

Network) had 83.20%. 

In [18], a weed classification method based on texture was 

demonstrated. The researchers focused on the deciduous and 

grassland weed categories. A dataset of 200 colour photos, 

100 from every grouping, was used, and process of cross- 

was performed ten times. The set of data was randomness 

divided through ten subgroups, with one is employed to 

evaluate and the remainder to be trained. The LBP (Local 

Binary Pattern) supervisor was once used encode the images 

and determine the LBP value for every pixel, resulting in a 

histogram representing the texture information of the image. 

The histogram served as the feature vector, which was then 

fed into an SVM using an categorization using kernel RBF. 

The classification accuracy achieved was 98.5%. 

In the study conducted by Satvini [19], a demonstration of the 

usage of geometry characteristics for agricultural and weed 

classification. The study involved the form characteristics 

such as eccentricities, region, the long of the major 

direction, boundaries, and duration of the smaller axis. The 

weeds that were included in the study were Chrysanthemum, 

Para grass, and Nutsedge. For a purpose of classification, It 

was utilized by the SVM and RBF and function 

polynomials. The dataset comprised 2560 images, 1155 of 

the two categories (crop and weed) was employed to 

train, and 125 of every class were utilized for validating the 

model. The SVM's achievement was commendable, As it 

accurately identified every 125 photos of a field and 104 of 

the 125 photos of weeds as invasive plants, but incorrectly 

classified 21 images of weeds as crop. The second table of 

the research study provides a summary of every project that 

has engaged SVMs for vegetation identification. Described 

an approach for classifying monocotyledon and 

dicotyledonous species in maize seedlings using shape 
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characteristics [20]. A authors utilized a information set 

consisting of 60 grain 280 weed photo; however, the images' 

format or nature was not specified. Otsu's threshold was 

employed, which relies on the Excess green method, to 

eliminate the background. The authors then area ratio, size 

ratio, bizarre behaviour, and smoothness were utilized. As 

shape features to train a probabilistic neural network (PNN) 

on 20 corn and 80 weed images. They then tested the PNN 

on 40 corn and 200 weed images, culminating in a 92.4 

percent accuracy for maize and a 95 percent accuracy for 

pest. The creators indicated that a timing collection of 

images may have contributed to the misclassification. The 

PNN's performance was compared to that of a 

backpropagation neural network (The BP system) 

underwent training and assessment using an identical 

dataset. The PNN achieved greater results, with maize and 

vegetation precisions of 87.5 and 93.0 percent respectively, 

respectively, compared to the BP network. 

 

4. Neural Systems 

CNNs are a form of deeper neural network that involves 

convolutional layers has proven highly effective in various 

computer vision tasks such as image recognition and 

classification. CNNs imitate the brain's visual cortex in the 

brain of a person by identifying visual trends while 

acquiring important characteristics and spatial relationships 

in photos using little preprocessing. The research [21] 

discovered in 1962 that complicated tissues in the apparent 

cortex accomplish spatial consistency via the adding of 

distinct simple responsive tissues prompted researcher 

Fukushima [22] to suggest the initial visual comprehension 

approach, the "recognition." The recognition simulation was 

made up of both preliminary processing levels, 'S' (Simple) 

tissues and 'C' (complex) tissues, to resemble [21] results. 

1987 saw [23] the introduction of Time Delay neural network 

algorithms (TDNN), a convolutional-like neural network 

system created to be shift-invariant to the context of time. 

Yet, researcher Yang, was the primary person to introduce 

the design of CNN as we know it today  [24]. The proposed 

CNN, called "LeNet-5," was successful in classifying 

handwritten digital photos. LeNet-5's segmentation block 

included maps of features known as 'filters' or 'kernels' and 

layers for pooling. Despite introducing an intriguing model 

for machine vision, the paucity of more powerful 

computational processors and extensive databases of images 

impeded its development. In contrast, in 2012, [25]. LeNet 

was effectively scaled up to a more complex and wider 

system utilizing GPUs and a more extensive imaging 

collection (Imagenet). A number of sophisticated artificial 

neural networks, including GoogLeNet [26], VGG-Net [27], 

and ResNets [28], In general, CNNs are comprised of two 

squaresboth the convoluted and completely linked brain 

blocks. The function of the convoluted prevents was to 

identify important characteristics of images and spatial 

associations requiring little processing. Images generally 

appear as 2-D panel matrices containing numerous channels, 

like RGB photos, that contain three distinct pairs of 2-D 

panel matrices. The convolutional block operates on the 

image input matrices, and the information that results is 

transformed into a character vector with just a single 

column. By applying a backpropagation procedure, the 

characteristics collection is subsequently employed to 

construct an entirely linked artificial neural network. Within 

the block generative, the matrix images undergo convolution 

and then pooling have been developed. 

To extract features in CNNs, the convolution technique is 

used. This involves sliding a smaller kernel matrix over the 

input image matrix to produce a convolved feature map. 

Pooling is then performed to down sample the feature maps 

by extracting either the maximum or average value from a 

smaller window in the feature maps. The resulting features 

are the data will be input into a layer with full connectivity 

and taught with a backpropagation procedure. For 

classification tasks, different activation functions are used in 

the hidden and output layers. 

In their study, [29] introduced a novel neural network 

architecture called SOM, which utilizes local linear 

mappings of neurons for differentiating between weed and 

crop based on Utilizing a scanning spectrograph, the near-

inf spectrum of reflectance was acquired. The compilation 

of data comprised of reflectance spectra from 88 corn 

samples and 10 different weed species including buttercup, 

Canada thistle, charlock, chickweed, dandelion, grass, 

redshank, stinging nettle, wood sorrel, and yellow 

trefoilThis led to a combined dataset of 766 bands for weeds 

and 88 bands for corn. To identify the key factors 

contributing to differentiation, a separability index was 

utilized. The main elements along with particular bands 

“(539, 540, 542, 545, 549, 557, 565, 578, 585, 596, 605, 

639, 675, 687, 703, 814, and 840)” were Important factors 

that contribute to distinction. 

The dataset was divided through 10 matching pairs using 

cross-validation, and the SOM artificial brain has been 

tested and trained via 90 and 10 percent of every set of data, 

respectively. Categorization precisiongotten from 

aggregating every test sets' results was found to be 96% for 

corn and 90% for weeds. The performance of the SOM 

network was also compared to other classifiers such as 

PNN, Multi-layer Perceptron, and Linear Vector 

Quantization, and it was found to be superior with 

classification accuracies of 85 percent for maize and 77 

percent for weeds, accordingly. 

Yang and colleagues (reference [30] proposed an artificial 

neural network (ANN)-based method for classifying 

different weed species in cornfields. This study examined 

widespread lambs quarters, quackgrass, yellow nutsedge, 

and velvetleaf as weeds. The original dataset included 

images of unspecified number and size, which were rotated 

by 90, 180, and 270 degrees to enlarge the extent of the 

dataset. The resulting collection contained 1736 colour 

photos of maize, 772 colour photos of velvetleaf, 680 colour 

photos of quackgrass, 752 colour photos of typical lambs 

quarters, and 1480 colour photos of yellow nutsedge. Green 

material was extracted in the photos using the measure of 

green technique, and the photos were subsequently 

converted to grey. 

The ANN model proved trained without the use of cross-

validation, as it was found to be unnecessary in the initial 

stage. The ANN algorithm achieved a recognition rate of 

100% for corn, indicating perfect classification accuracy. 

For the different weed species, the ANN algorithm achieved 

recognition rates of 92 percent over velvetleaf, 62 percent to 

quackgrass, and 80 percent to yellow-nutsedge. 

Sajad et al. [31] demonstrated a wavelet-based application 

that utilized two-dimensional DWT for wavelet analysis. 

This method was employed to extract relevant attributes for 

categorisation, specifically for weed identification in maize, 

with the assistance regarding an ANN. The compilation of 
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data included 35 images corn and fifty photographs of weed, 

The weed species examined in this study included Common 

lambsquarters, Alhagi maurorum, Convolvulus arvensis L, 

and Amaranthus. For training, a set of 20 corn images and 

30 weed images were utilized, while testing involved 15 

corn images and 20 weed imagesInitially, the photos were 

divided via the Extra green gauge, then proceeded with 

extraction of features using DWT. The features extracted 

included Contrast, vitality, chaos, a state of in and local 

uniformity. The accuracy of categorization achieved by the 

ANN was 98.8%. 

Dellia et al. [32] demonstrated an application of CNN for 

object detection, specifically for discriminating between 

weeds and maize. Vegetation (foxtail) and vegetation-like 

(yellow nutsedge) vegetation was investigated. The dataset 

included 224-aerial photographs of cornfields, and that were 

categorized within three groups: Instruction (158), 

confirmation (33), and assessment (33) are the components 

of training. To obtain smaller images for labeling, a 

structure of 300 × pixels by 300 was placed above enlarged 

images. The smaller images were then manually labeled as 

either weed or non-weed. However, there were significantly 

more non-weed images than weed images, so the authors 

utilized an information enhancement approach (not defined) 

to enhance the images of weeds. Subsequently, the set of 

data was reorganized into test, validation, and training sets. 

Two additional datasets were created by adding context to 

the three hundred x 300-pixel square graphic in the center of 

the screen: Two sets of images were used, one comprising 

rectangular images with fully extended context, and the 

other comprising square photo with context extended along 

the edges. A rectangular images were created by stretching 

any side of the central image that lacked a 300-pixel border 

to the outermost point is produced via the large graphic. 

while square images were generated by only squeezing 

outwards to three hundred pixels. 

Drymann and colleagues (2021) [33] developed a modified 

version of VGG16 using a convolutional neural network to 

classify crops and weeds pixel-by-pixel. The study focused 

on maize crops, but did not specify the weed species, only 

that they included 23 different types. The authors created 

simulated field images by arbitrarily arranging plant 

segments on above the soil photos, and used ground truth 

segmented images labeled as blue (weed), red (soil), and 

green (plant) pixels to generate these simulated images. 

They used 8340 and 301 segmented plant and soil images, 

respectively, to create the modeled images. They generated 

training data employing eighty percent of plant photos and 

data for testing with the leftover twenty percent. The photos 

were then scaled to eight hundred x eight hundred pixels, 

yielding a trained collection of 3463 photos and a 

verification collection of 123 photos. Two manually 

segmented actual photographs were used to assess the 

performance of the crop segment method in this study. The 

first photograph originated from an ideal maize farm that 

had few plants coincide, whereas the other one was captured 

in an area with fewer plants of maize and a greater weed 

presence. In both instances, the algorithm effectively 

identified both weeds and crops, with precise categorization 

of 98.3% and 94.4% for the first and second images, 

respectively. However, because there were greater number 

of earth pixels than cropland or vegetation pixels. pixels, the 

writers calculated intersection over union for every 

category. For the first image, the crop, soil, and weed IOUs 

were 0.92, 0.97, and 0.78 subsequently, for this second 

photograph, they were 0.71, 0.93, and 0.70, respectively. 

Table 3 provides a summary of studies that have used neural 

networks to identify weeds. 

Wu et al. conducted a study on the classification of weeds 

and maize seedlings because of features textural, wavelet 

features, and dimensions of fractals. The study aimed to 

classify weeds into ranks according to their forms and 

harmful effects. The ExG-ExR colour index was used to 

convert 84 digitized colour photos (35 of maize and 49 of 

vegetation) to grayscale versions. The Wavelet function was 

subsequently utilized to derive features that include the 

approximating element (A2), precision aspects “(H1, V1, 

D1, H2, V2, D2)”, and values for energy “(eA2, eH1, eV1, 

eD1, eH2, and eD2)”. The resulting energies have been put 

through a BP system, resulting in a 100% accuracy in 

separating the weed species, despite not for Maize and 

plants. When only the electrical features had been utilized, 

the classification accuracy was 77.14%, while using fractal 

dimensions alone resulted in 80% accuracy. Combining both 

features resulted in 94.28% increased classification 

precision. The BP network also utilized form constraints for 

weed identification. Wu et al.'s work was published in [34, 17, 

35]. 

 
Table 2: Provides an overview of studies that used SVMs to identify weeds 

 

Study Research problem Dstaset Accuracy 

[16] weed and nitrogen stress in 

corn detection 

In a study, 9 treatments with 20 data points each 

and 4 replicates per treatment were analyzed, 

yielding a dataset with 720 entries. Half of the data 

was designated for training and the other half for 

testing. The analysis was conducted using a 

Compact Airborne Spectrographic Imager as the 

hardware device. 

A 10-fold cross-validation method was employed to 

evaluate the performance of the model (with a portion 

of the data set designated for testing). The SVD 

showed accuracy ranging from 66% to 76% when 

considering both weed and nitrogen application rates 

together. When the weed and nitrogen treatments were 

considered separately, the 57accuracy increased to 

73% to 83% and 83% to 93%, respectively. 

[20] 

Textural properties for 

weed and corn seedling 

classification 

Sixty-six color photographs were taken, comprised 

of 30 pictures of corn seedlings and 36 pictures of 

weeds. The split for usage was 60% for training 

and 40% for testing purposes. The device utilized 

was a digital camera with a 640x480 pixel 

resolution. 

The Support Device Machine (SVD) generated 

accuracy rates between 92.31% to 100% with varying 

feature selections. 

[17] 

Using shape criteria, you 

can spot weed and corn 

seedlings in fields. 

A total of 64 color photographs were taken, with 

40 images designated for the training set and 24 

for the testing set. The images were captured using 

a digital camera with a resolution of 640×480 

The following accuracy rates were achieved using 

Singular Value Decomposition (SVD): Sigmoid - 

96.5%, RBF - 67.67%, and Polynomial - 90%. 
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pixels 

[18] 

examining regional binary 

patterns for weed 

categorization software 

The dataset used in this study consisted of a total 

of 200 images, with 100 images each of broadleaf 

and grass, respectively. To facilitate training and 

testing, the dataset was divided into ten subsets, 

with one subset being designated as the testing set 

and the remaining nine subsets utilized for 

training. The hardware employed for capturing the 

images was a digital camera with a resolution of 

1200×768 pixels. 

SVD: 98.5% 

56 

Performance evaluation of 

weed identification 

algorithms 

A total of 2560 images were captured, with 1155 

images taken for each class of weed and crop for 

training purposes, while 125 images per class were 

utilized for model validation. The images were 

captured using a 10-megapixel digital camera 

100% SVD for the crop and 83.2% for the we 

19 classifying weeds and corn 

A total of 1000 images were utilized in the study, 

consisting of 500 images of crops and 500 images 

of weeds. Among these, 450 images of each class 

were used for training, while 100 images were 

reserved for testing purposes. Unfortunately, the 

hardware used in the study was not specified. 

82.1% 

46 

Using Wavelet Transform 

to categorize photographs 

of marijuana 

A total of 1200 images were utilized in the study, 

consisting of 500 images in the broad category, 

500 images in the narrow category, and 200 

images in the unknown category. Among these, 

600 images were used for training, including 250 

images of broad leaves, 250 images of narrow 

leaves, and 100 images of unknown weeds. The 

remaining 600 images, which included 250 images 

of broad leaves, 250 images of narrow leaves, and 

100 images of unknown weeds, were used for 

testing purposes. 

Family of Symlet wavelets: 98.1% 

Table 3: Contains summaries of experiments using neural networks to identify weeds 
 

Study Research problem Dstaset Accuracy 

[29] 

neural network-

based classifier for 

plants 

A total of 888 plant samples were included in the study, 

with 88 samples of corn and 800 samples of various weed 

species, including 77 samples of buttercup (Ranunculus 

repens), 79 samples of Canada thistle (Cirsium arvense), 75 

samples of charlock (Sinapis arvensis), 73 samples of 

chickweed (Stellaria media), 76 samples of dandelion 

(Tarraxacum officinale), 80 samples of grass (Poa annua), 

78 samples of redshank (Poligonum persicaria), 75 samples 

of stinging nettle (Urtica dioica), 78 samples of wood sorrel 

(Onalis europaea), and 75 samples of yellow trefoil 

(Medicago lupulina). The hardware used for the study was 

not mentioned. 

The accuracy of the different machine learning 

models for crop and weed identification were 

reported as follows: PNN achieved 93% accuracy for 

corn and 85% for weed, Multi-layer Perceptron 

achieved 96% for corn and 71% for weed, SOM 

achieved 89% for corn and 77% for weed, and Linear 

Vector Quantization achieved 92% for corn and 84% 

for weed. 

[30] Using ANN to spot 

weeds in cornfields 

The researchers captured 1736 color images of corn, 772 of 

velvetleaf, 672 of quackgrass, 752 of common 

lambsquarters, and 1480 of yellow nutsedge using a digital 

camera, specifically a Kodak DC50. 

The artificial neural network (ANN) achieved 

accuracy rates of 100% for corn, 92% for velvetleaf, 

62% for quackgrass, and 80% for yellow nutsedge. 

74 

Textural 

characteristics for 

weed, corn, and 

categorization 

A total of 66 color images were captured, comprising 30 

images of corn seedlings and 36 images of weeds. The 

images were taken using a digital camera with a resolution 

of 640×480 pixels. The dataset was split into a training set 

consisting of 60% of the images and a testing set consisting 

of the remaining 40%. 

The SVM algorithm with various feature selection 

techniques achieved accuracies ranging from 92.31% 

to 100%. On the other hand, the Backpropagation 

(BP) algorithm achieved an accuracy of 80%. 

[35] 

Using wavelet 

characteristics and 

fractal dimension, 

weed or corn 

identification 

35 images of corn and 49 of weed were captured using a 

digital camera with a resolution of 640x480 pixels. For 

training, 49 images were used, consisting of 20 images of 

corn and 29 images of weed. The remaining 35 images, 

comprising of 15 images of corn and 20 images of weed, 

were used for testing purposes. 

The backpropagation (BP) network achieved 77.14% 

accuracy when trained with seven wavelet energy 

parameters. When the network was trained with 

wavelet energy parameters and fractal dimension as 

input, the accuracy increased to 94.28%. 

[34] 

identifying 

individual corn or 

weed seedlings in 

fields using shape 

factors 

Two hundred images were taken, consisting of 100 images 

of broadleaf and 100 images of grass. The dataset was 

divided into ten subsets, with one subset used for testing 

and the remaining nine subsets for training. A digital 

camera with a resolution of 1200x768 pixels was used. 

The application of SVD resulted in accuracies of 

96.5%, 67.67%, and 90% for three different tasks, 

while ANN achieved an accuracy of 83.2%. 

[20] Identifying weeds in 

a field of corn 

The dataset consists of 60 color images of corn and 300 

images of weed. The dataset was randomly divided into 

The PNN achieved a recognition rate of 92.5% for 

corn seedlings and 95% for weeds. 
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seedlings training and testing sets. The training set consists of 120 

images (20 of corn and 100 of weed), and the testing set 

consists of 240 images (40 of corn and 200 of weed). A 

digital camera with a resolution of 640×480 pixels was 

used to capture the images. 

[31] 

Crop detection and 

classification using 

wavelets 

The ANN model was built using 20 images of corn and 30 

images of weeds (all vegetation except corn). The model 

was then evaluated using 15 corn images and 20 weed 

images. The digital images were obtained using a 

Canonixus digital camera. 

Classification accuracy of 98.8%. 

[32] 

weed detecting 

software for aerial 

images 

The dataset consisted of 224 aerial images captured using a 

Sony A6000 camera mounted on a drone. The images were 

divided into three categories: no context, full stretched, and 

edge stretched data 

The accuracy of the validation was 97.1% for the 

edge-stretched category, 94.6% for the no-context 

category, and 96.3% for the full-stretched category. 

[33] 

Pixel-by-pixel crop 

and weed 

categorization using 

CNN 

The researchers had 8340 and 301 segmented images of 

plants and soil, respectively. They used 80% of the plant 

images for generating training data and 20% for generating 

testing data. No hardware was used in the process. 

In the first image, the intersection over union (IOU) 

values were 0.93 for crop, 0.98 for soil, and 0.79 for 

weeds. In the second image, the IOU values were 

0.71 for crop, 0.93 for soil, and 0.70 for weeds. 

For the first image, the crop had an IOU of 0.93, the 

soil had an IOU of 0.98, and the weeds had an IOU 

of 0.79. In the second image, the crop had an IOU of 

0.71, the soil had an IOU of 0.93, and the weeds had 

an IOU of 0.70. 

IOU values for the first image were 0.93 (crop), 0.98 

(soil), and 0.79 (weeds), while the second image had 

IOU values of 0.71 (crop), 0.93 (soil), and 0.70 

(weeds). 

 

5. Models of Several Types for Weed Identification 

Other machine learning methods were utilized to identify 

weeds in corn besides SVM and NNs. This section outlines 

these approaches. In one study, the same authors employed 

discriminant analysis (DA) and decision tree (DT) for the 

same classification task [16, 36]. Utilising SAS's STEPDISC 

function, the most important bands were selected from 71 

wavebands. The STEPDISC algorithm was utilized for all 

the three categorization issues, yielding a series of bands for 

the beginning of growth, the tasselling of the platform, and 

the completely developed state: teams 34-42-42, teams 26-

32-31, and teams 28-19-19, respectfully. For each of the 

three classification problems, DT selected a smaller number 

of wavebands. The variety of occurrences where 

misclassified divided due to the number of instances utilized 

in the categorization, danger estimation values had been 

generated. A lower estimating risk indicated a higher 

classification accuracy. In comparison to ANN, DA gave an 

accuracy rate for classification of 75 percent over the initial 

categorization issue, whereas ANN and DT only obtained 58 

percent and 60 percent, correspondingly. The categorization 

precision for the subsequent problem was 87 percent, 76 

percent, and 68 percent, whereas the classification precision 

for the third problem was 83 percent, 81 percent, and 69 

percent, correspondingly. DT had the biggest precision in 

the classification of 71 percent to feed the initial problem 

with classification during the tassel the platform, whereas 

ANN had the highest classified precision of 88 percent for 

the remaining two problems with classificationAt the mature 

stage, DA enjoyed the greatest results (79 percent) in the 

combination instance. In addition, ANN enjoyed the greatest 

results for the remaining two scenarios: nitrogen (88 

percent) and weeds (85 percent). DA had the best 

performance over any of the three problems with 

classification during the initial stages of development. 

Hossein and colleagues [37] presented an early work 

demonstrating the use of FFT to stay the identification of 

Millet (pigweed) in maize in real-timemoment.. The authors 

obtained images from cornfields that contained the weed 

and then preprocessed the images by applying the Euclidean 

distance algorithm for color segmentation (utilizing green 

and red pixel values), Change to monochrome and border 

detection employing the distinction between the greyish 

levels of pixels next to it. They then used two-dimensional 

FFT to segment the images into based on regularity and 

weight, origins, crop, and greenery, followed by a post-

processing stage to examine misunderstandings and merge 

the regions through a singular figure for plant classification. 

When the suggested approach was applied to eighty photos 

of cornfields, FFT revealed an accuracy in classification of 

92.8 percent. The writers have additionally discussed the 

potential of implementing this technique is implemented on 

an agricultural robotic that includes an electronic camera 

over taking photos, followed by weed categorization and 

removal using herbicide sprayers, cutting blades, and other 

methods. 

Gee and colleagues (2004) proposed a method to distinguish 

among produce and vegetation and determine inter-row the 

WIR for actual time weed management. The investigation 

included the sunflower, wheat, and maize harvests, but did 

not specify the weed species. The study employed two kinds 

of photos: three hundred agronomic photos and fifty photos 

for every WIR score of zero, ten percent, twenty percent, 

thirty percent, forty percent, and fifty percent) produced by 

an engine for simulation and one hundred wide-view 

perspectives RGB photos recorded from the sunflower 

(about 35 photos), grain (35 photos), and grain (30 photos) 

areas, subsequently processed using the Matlab programme 

6.5 software processing. Excess Evergreen thresholds was 

carried out on the RGB images, and only the green channel 

was considered as it was not affected by the light source's 

angle or intensity. A DHT was employed to detect rows of 

crops in the graphic, and conventional glob colouring 

evaluation, a region-based separation method, was applied 

to distinguish between field and vegetation [38]. 
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In another study, [39] presented a wavelet-based approach for 

distinguishing between crop and weed. The authors used 

two sets of images: 1530 synthetic grayscale images 

generated with a simulation engine and an unspecified 

number of RGB images. The synthetic images were 

modeled with three Geographical distributions of weeds 

(Neyman-Scott, Poisson, and mixture) resulting in thirty 

image series, each with seventeen synthetic images 

representing various Inter-row the WIR levels ranging 

between zero percent and eighty percent. The clustering 

method k-means was used to combine the RGB photos. The 

authors analyzed 33 ripple is transformed by six ripple basic 

operations and selected the two best performing wavelets. A 

genuine bidimensional filter is known as Gabor was used to 

detect crop rows. The authors compared each of the three 

wavelet filters is employed for Random filtering. By 

analyzing the confusion matrix, which included four 

terminologies (False modification, Real Crop, Artificial 

Weed, Real Weed). They calculated several metrics, 

including Initial WIR, Initial Planting Speed, Observed 

WIRinter-row, CR, TWDR, TCDR and mistaken harvest 

and vegetation identification error rates. 

Asif and colleagues [40] developed a computer vision system 

for guiding an automated robot to detect and remove weeds. 

The color segmentation was performed using k-means 

clustering, and a region of interest (R-O-I) were selected 

consequently. Afterward, the photos were changed to 

monochrome, and Sobel edge detection was applied to 

detect the edges. A technique called the Hough Change was 

utilized to identify field margins, and guide the robot to 

follow them. The ROI had been broadened if the high-

throughput (HT) refused to discern the field borders 

following a certain amount of tries. In addition, the HT 

supplied monitoring metrics which showed the position and 

orientation of each of the cropping lines relative to the 

image's center. The system successfully detected and 

tracked the crop boundaries, with errors of less than ± 5 

pixels and ten cents for localization and position, on 

synthetic images. 

Xavier and colleagues [41] developed a real-time computer 

vision system to detect and classify weeds in maize. The 

study included four types of weeds. The dataset contained 

six videos, with each video having an average length of 12 

seconds or 300 frames, resulting in a total of 1800 frames. 

Binary images were obtained by segmenting the images 

based on a threshold, separating the areas representing 

foliage in those that did not. The system comprised two 

independent subsystems, RCRD and FIP, which operated 

concurrently. RCRD was utilised for recognising cropped 

grid frames, and by performing the AND operator, it merged 

all binary frames to create a single image. For images that 

contained large weed patches, FIP utilized field divisions 

produced by the RCRD. The small areas of the image's trim 

row, if they coincided with the positions marked by FIP, and 

The remainder was destroyed. On average, the algorithm 

detected eighty-five percent of all vegetation and 69 percent 

of the actual crop when evaluated on multiple maize videos 

to various fields and decades. The technology behaved 

admirably according to various conditions, including 

changing lighting, soil moisture, and hazy conditions, and 

even while the crop and weed were in very difficult growth 

stages. 

Longchamps and colleagues [42] examined the potential of 

LDA for differentiating maize and according to their UV-

induced luminescence. The study included various plant 

species, including “Corn mixtures (Monsanto the disorder 

26-78, the company Syngenta N2555, and the wealthy 

60T05), monocot/grass mixtures (Echinochloa crus-galli 

(L.) Beauv, Digitaria ischaemum (Schreb.), the species 

Setaria glauca (L.) Beauv and Panicum capillare (L.), as 

well as diatoms mixtures (Ambrosia artemisiifolia (L.), the 

album (L.), Capsella bursa-pastoris (L.) Med, and It 

retroflexus (L)”. The researchers collected 1440 firefly 

signatures in spectra from several comparable studies 

conducted at various points in time, but owing to lost 

spectra, just 1361 spectral identities had been accessible. 

Employing PCA, the most vital data was determined. The 

researchers then utilized LDA via the botanical genus and 

the initial five main elements as variables and carried out 

cross-validity, yielding a matrix of confusion with a 37 

percent error in prediction. They then performed another 

categorization by clustering the mixtures together, which 

produced a matrix of confusion with an estimated error of 

8.2 percent and a success rate of 91.8 percent for 

classification. 9 and 49 grass spectra were incorrectly 

categorized as Maize and algae, accordingly, out of 388 

grassland spectra; the rest of them were properly 

categorised. 

Montalvo and colleagues [43] developed a method to detect 

crop rows in high weed pressure maize fields. The dataset 

included 300 RGB images of maize, with 200 photos 

displaying dense vegetation growth and 100 images having 

exceptionally high weed densities. To separate the crop and 

weed, Initially, the photos were converted to monochrome 

via the Excessive The author Indicator and then subjected to 

a double Otsu approach. Using a regression method 

employing sum minimum squares, the horizontal lines 

related to the agricultural plots were determined. The 

authors compared the efficiency of linear regression with 

regard to though transform for photos of different decisions 

(1390 × 1044, 696 × 522, 720 × 576, and 360 × 288). LR 

outperformed HT for all resolutions, with the highest 

effectiveness percentage achieved for images with a 

resolution of 1390 × 1044, where LR scored 95.5% and HT 

scored 89.3%. The weed species involved in the study were 

not mentioned. 

Gao and colleagues [44] investigated the possibility of 

identifying weeds and hyperspectral imaging of maize. The 

research included three types of weeds: Cirsium arvensis, 

Rumex, and Cirsium arvense, and 25 images of maize. The 

authors used ROIs from the leaves of each plant, with a total 

of 79, 80, 80, and 84 ROIs over specifically, 

Rumex, Cirsium arvense, and maize, Cirsium arvensis, in 

that order. Reflectance calibration was performed for each 

band, and NDVI and RVI values were calculated for each 

ROI. Principal component analysis was then applied to 

reduce redundancy, and the initial five main elements were 

analysed in greater detail. Random forest detectors were 

built about multiple spectral character combinations and an 

accuracy-focused reduction of features method was used to 

select the 30 most important features. The RF models were 

evaluated using A single set is used to evaluate and a total of 

four to serve as training in a five times a cross-valid. The 

results showed a precision and recall of 94% and 100%, 

respectively, for maize, 70.3% precision for Rumex, 65.9% 

precision for Cirsium arvense, and 95.9% precision for 

Cirsium arvensis. The optimal RF model was found to 

outperform KNN, as determined by a McNemar test 0.05 at 
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the reliability stage. 

Liu et. al. [45] presented a fatal object detection approach that 

utilized SVDD to distinguish between corn and weeds. RGB 

images were initially collected, 75 smaller photos (256 256 

frames) of maize and 43 smaller photos (256 256 frames) of 

vegetation have been obtained using a 256 256 pixel 

photograph. The specific type/species of weed was not 

mentioned. The photos had been then converted to grayscale 

and binary utilising the surplus green indicator. Next, 

wavelet decomposition was applied to draw out physical and 

energy-based characteristicsA multiresolution dimensional 

investigation separated frequency components into low and 

high frequencies. The images were decomposed into four 

groups: low-frequency component A1, high-frequency 

components H1, D1 (in x, y, and xy directions). RATE, 

where RATE is defined as the quantity of properly 

categorized items reduced by the overall amount of items, 

was utilized to evaluate the model's success. The SVDD 

model with the highest efficacy was validated 88.2 percent 

of the time. When T was the input vector. The study chose 

several morphologies and 5 wavelet-based characteristics 

that had a RATE>60% followed by generated SVDD 

predictions using every possible combination of those 

attributes for further analysis. 

Shubham [46] presented a method for distinguishing between 

crops and vegetation in a field of corn. The study utilized a 

collection of sixty RGB photos of a corn area, yet the 

vegetation type/species wasn't mentioned. The 

green indicator has been utilized to transform those 

photographs into cyan, magenta, and yellow. To distinguish 

between cereals and plant growth, the dual thresholding 

Otsu method was utilized. In regions of dense vegetation 

growth, the PCA technique was used to differentiate 

between crops and weeds across each crop row. The PCA 

technique achieved a classification accuracy of 91.67% by 

correctly identifying 55 out of the 60 images as either crop 

or weed. 

A. and A. [47] presented a weed-control automaton that uses 

pixel classification to identify weeds in cornfields. The 

dataset included 73 images of a cornfield, with no mention 

of the type/species of weed. The Surplus green procedure 

was applied for obtaining plant elements in the initial 

pictures, before auto-clustering. Clustering was applied to 

the colour level of a photo, and morphological operations 

were performed. Wavelet reshape was utilised in order to 

derive spatial and frequency characteristics, which were 

then utilised for identifying. the LabVIEW program was 

employed to carry out the entire procedure, and the 

algorithm used for classification identified 70 of 73 photos 

with a 95.89% precision rate. Once vegetation sections were 

determined, an interface made of hardware was employed to 

provide spraying instructions to the robot's nozzles. 

Pantazi and colleagues [48] developed a novel dynamic 

education method to distinguish among corn as well as 

various weed organisms by analyzing the differences based 

on their infrared projection. Ten species of weeds were 

included in the study: The genus Ran returns, Urtica dioica, 

Medicago among, Po annual, Cirsium arvense, the Oxalis 

plant europaea, Stellaria the press, Taraxacum 

officinale, Sinapis arvensis, and the genus Poly persicaria. A 

hyperspectral visual scanner installed on a vehicle served to 

gather spectral characteristics, which required albedo 

computation, plant choice, NDVI, resolution in space, and 

spectral evaluation. Diffuse banding selected had been 550, 

580, 660, and 830 nm. One-class classifiers were used to 

identify and remove the weeds as outliers, and the remaining 

weed species were included in a fresh multiclass classifier 

that could detect any novel kinds of plants that emerged. 

This procedure continued as long as the multi-class 

predictor contained all marijuana classes. Machine learning 

methods for the identification of the vegetation species, we 

utilized SVMs, self-encoder MOG, as well as SOM. On 110 

maize plant spectrum, decision-making was carried out, 

leading to a collection of 110 specimens, each with a vector 

formed containing four properties. This process was 

repeated iteratively for each new weed species. The first-

class MOG and SOM obtained a 100 percent produce 

identification rate. whereas the highest rates of identification 

over weed taxa are observed in were achieved by MOG and 

SOM for Cirsium arvense (98.14 percent SOM as well as 

98.15 percent MOG), Sinapis arvensis (90.74 percent SOM), 

Stellaria media (94.44 percent MOG and 92.59% SOM), 

Tarraxacum officinale (90.74 percent SOM), Poa annua 

(94.44 percent SOM), Polygonum persicaria (94.44 percent 

SOM), Urtica dioica (94.44% SOM), and Medicago lupulina 

(94.44 percent SOM). Good identification rates were 

achieved for Medicago as lupulin (83.33 percent), Oxalis 

also europaea (85.19 percent), Taraxacum beneficial (79.63 

percent), and Poa annua (85.19%) using the autoencoder, 

SOM, and SOM, correspondingly. 

 

6. Measures of Performance, Data Augmentation, 

Transfer Learning, and Dataset Size 

O train a classification model with high accuracy, a 

substantial amount information and powerful calculating 

equipment are usually required. The quantity and quality of 

the dataset can significantly affect the ML model's 

performance in image classification. Research studies [49, 50, 

51] have established that smaller datasets lead to lower 

classification accuracy. Multiple variables, including the 

number of segmentation groups, the level of detail of the 

characteristics of the image to be categorized, and class 

imbalance, determine the quantity of the set of ideas 

necessary to achieve the intended precision. As an instance 

[51]. Found which to achieve 90% accuracy, a 6000-image 

collection was examined. needed for three classification 

categories, while 40,000 was required for eight categories 
[52]. Using a small dataset may cause the model to overfit [53], 

which means the model memorizes variability and 

fundamental interactions, and scores unfavorably on 

potential data sets [54]. However, in some domains, it may 

not be feasible or cost-effective to gather a large training 

dataset. 
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Table 4: Contains summaries of studies that used various models to identify weeds 
 

Study 
Research 

problem 
Dataset Accuracy 

[36] 

Weed and 

nitrogen stress in 

corn detection 

A data set of 720 entries was created with 20 data points 

of 9 treatments, each with 4 replicates. For training 

purposes, 50% of the data was used, while the remaining 

50% was used for testing. The hardware employed was a 

Compact Airborne Spectrographic Imager (CASI). 

The classification performance of three different models 

was evaluated for two different classification problems 

at different growth stages. For the first classification 

problem at the tasseling stage, the DT model achieved a 

71% accuracy, while the ANN model achieved the same 

accuracy level. For the third classification problem at the 

full growth stage, the DA model achieved a higher 

accuracy of 79% 

[37] 

Classification of 

weeds and corn 

using FFT 

The study utilized robotic cultivators, equipped with a 

digital camera for image capturing, and pre-processing 

techniques were employed to obtain RGB images. 

The researchers employed 80 images of corn fields to 

assess the accuracy of the classification. They detected 

5927 blocks labeled as weeds and 3217 as crops, out of 

a total of 8579 blocks that were correctly classified. The 

accuracy of the model was 92.8% 

[38] 

Crop and weed 

differentiation in 

agronomic 

photographs 

The experiment used a total of 400 images, consisting of 

300 simulated images and 100 in-field images. Among the 

in-field images, there were 35 of wheat, 35 of sunflower, 

and 30 of maize. 

In the case of simulated images, the classification 

accuracy was 100% for crops with low WIR, while for 

medium WIR, the accuracy was 94% and 92% for two 

different types of crops. For high WIR, the accuracy was 

89% and 82% for the same two crop types. For the 100 

in-field RGB images, the accuracy was 88% for 30 

images of maize with low WIR. 

[39] 

Utilizing the 

wavelet 

transform, 

distinguish 

between crops 

and weeds. 

1530 pictures were taken using a CANON Ixus 330 digital 

camera. 

The accuracy for Daubechies 25 was 80.7% while for 

Discrete approximation Meyer wavelets it was 80.6%. 

[40] 

autonomous 

weed detection 

using vision 

No data information available Equipment used: not 

brought up 

To ensure accurate results, the allowable error for 

translation and orientation is set to be no more than ±5 

pixels and ±10 degrees, respectively. 

 

 

 

[42] 

Based on their 

UV-induced 

fluorescence 

spectral 

signature, crops 

and weeds are 

classified. 

No data information available Equipment used: not 

brought up 

LDA over PCA: 

91.8% 

[41] 

Real-time image 

processing for 

crop and weed 

differentiation 

The study employed six video segments, each lasting an 

average of 12 seconds (equivalent to 300 frames), yielding 

a total of 1800 frames. The hardware utilized for data 

acquisition included Sony DCR PC110E and JVC GR-

DV700E cameras, which captured images at a resolution 

of 720×576 pixels. 

The system was able to achieve a weed detection rate of 

approximately 95% and a crop detection rate of around 

80% across varying environmental conditions. 

[45] 

Utilizing SVDD 

to identify photos 

of weed and corn 

A total of 118 color images were captured using an 

Olympus FE-280 digital camera, which has a resolution of 

1280×960 pixels. For training purposes, 40 images of corn 

and 10 images of weeds were used, while 35 corn and 33 

weed images were used for testing. 

95.59% SVDD (eH2, eV2, T) 95.59% SVDD (eH2, 

eV2, C, D, and T). 

[55] 

Using LIDAR to 

distinguish 

between weeds 

and corn 

1558 sample units Use of hardware not specified 

The overall accuracy for CDA was found to be 72.2%. 

The accuracy for dicots was 64.5%, while the accuracy 

for crops was 74.3%. 

[47] 

Automatic weed 

and corn 

identification 

The study used 73 images captured by a digital camera, 

specifically a normal webcam. RGB images were obtained 

at a size of 640×480 pixels. 

95.89%. 3 photos were improperly categorised. 

[44] 

Hyperspectral 

imaging was 

used to 

differentiate 

between weed 

and maize. 

A set of 110 spectra obtained from maize plants were used 

for feature selection, resulting in 110 representative 

samples. One-class classifiers were then evaluated to 

identify new species by testing 54 additional samples of 

maize plants and 54 samples of a single weed species as 

outliers. The imaging technique employed was 

hyperspectral, and the hardware used for data acquisition 

was Inspector V9, which incorporates a 10-bit integration 

charge-coupled device. 

One-class classifiers based on MOG and SOM achieved 

100% accuracy. For the MOG-based classifier, the 

accuracy ranged from 31% to 98%, while for the SOM-

based classifier, the accuracy ranged from 53% to 94%. 
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The significance of bigger data sets for better categorization 

is regularly emphasized. In many situations, accuracy by 

itself is insufficient for assessing the efficacy of a machine 

learning model. Additional performance measures, including 

the F1-s recall, precision, matrix of confusion, loss- log, and 

AUC-ROC, are commonly used to assess the performance 

of a model [56]. Accuracy, defined as the ratio of when the 

information being collected is unbalanced, comparing the 

number of precise forecasts to the entirety of forecasts can 

be deceiving. To be able to achieve fully comprehend the 

use of other performance metrics, it is necessary to 

understand fundamental terminologies including accurate 

positive tests, erroneous positives, exact adverse effects, and 

inaccurate negatives Table 5 outlines the meanings of the 

aforementioned phrases, while Table 6 provides the 

numerical meanings of frequently utilized metrics for 

performance. 

The matrix of confusion gives a summary of the advantages 

and disadvantages anticipated through the algorithm, but it 

is not an indicator of performance per se. Fig 2 illustrates a 

confusion matrix for binary classification. Pinpoint gauges 

the proportion of correctly anticipated signals relative to the 

overall amount of projected positives, with greater accuracy 

showing fewer errors in the algorithm. In circumstances in 

which false alarms are extremely undesirable, it is useful. 

Memory, sensibility, or real-positive rate quantifies the 

capacity of a model to foresee genuine positives relative to 

the total number of true positives. A greater memory rate is 

essential for identifying illnesses. The F1 indicator assigns 

erroneous positives and erroneous negatives to the same 

weight and is the average of both recall and accuracy. The 

rate of false positives or miss percentage is the cumulative 

opposite of susceptibility and assesses the percentage of 

identified denials relative to the entirety of expected 

negatives. Log-loss is often employed in binary sorting to 

quantify the variation between the anticipated likelihood of 

a situation falling into a class and the actual likelihood 

(typically 1). 

 
Table 5: Classifier prediction definitions 

 

Terminology Definition 

False Positive 

FP 

An instance was incorrectly assigned to a specific 

class 

True Positive 

TP 
correctly attributed a particular instance to a class 

False Negative 

FN 

An instance that was incorrectly classified as a 

member of a class 

True Negative 

TN 

An instance that has been correctly identified does 

not belong to a certain class. 

 
Table 6: lists the definitions of performance metrics in 

mathematics 
 

Performance indicator Definition 

Precision (P) TP/(TP+FP) 

Specificity (S) / True Negative Rate (TNR) TN/(TN+FP) 

Recall (R) / True Positive Rate (TPR) TP/(TP+FN) 

F1 Score 2PR/(P + R) 

Miss Rate / False Positive Rate (FPR) FN/(TP+FN) 

Log Loss (for one-hot coded vectors) -log p 

Note that 'p' refers to the probability of an instance being classified 

in a particular class. 
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Fig 2: Shows the confusion matrix for a binary classification task 
 

The receiver working characteristic (ROC) graph is defined 

as widely used as a performance metric for categorization 

binary algorithms with unequal sets of data [57]. This graph 

compares the percent of true positives (Y line) with the rate 

of false positives (X line) for various categorization criteria 

(the likelihood thresholds). It is essential to note that a 

classifier model aims to strike a balance between authentic 

findings and erroneous positives. A randomised classifier 

geared to produce more true positives may also generate 

false positives at the same rate. Therefore, arbitrary 

segmentation in such cases followed by 45-degree ROC 

horizontal line via an AUC (area under the curve) of 0.5. A 

classifier with subpar performance lies below this horizontal 

line and possesses an AUC level below 0.5. Therefore, an 

effective predictor has to have an area under the curve via an 

AUC score larger than 0.5 that lies above this straight line. 

 

7. Conclusion and Future Research Directions for the 

Identification of Weeds in Corn 

In the present study, that we conducted an analysis of 35 

research studies focusing on maize identification of weeds. 

Twenty-seven investigations towards of a total of thirty-five 

research. Were dedicated to the problem of classification, 

whereas seven tackled the issue of recognising an object. 

Additionally, dual documents addressed each of these 

issues. Fig 3 depicts the placement of those pieces by 

algorithms and problem type. In these studies, three machine 

learning SVM, Artificial Neural Networks, and various 

methods (such as networks Bayesian, trees of decisions, 

Evolutionary Algorithms, etc.) were utilized Eight of the 

offered articles employed SVM as an artificial learning 

technique, ten employed artificial neural networks, and 

seventeenth employed other techniques. Fig 4 demonstrates 

the placement of articles based on the ML technique 

employed. Upon closer examination, It had been discovered 

It was found that the SVM via RBF function in the kernel 

was the least popular SVM kind, whereas the one using BP 

was the majority popular neural network type, 

nevertheless, CNNs had been extensively utilised. Popular 

in the Assorted methods were Fourier evolves, as well as 

DT, PCA, tailored vision systems, etc. Color data (images 

and videos) was the most commonly used type of data, 

accounting for eighteen of the submitted articles, data from 

spectroscopy (including hyperspectral information, 

absorption wavelengths, and luminescence wavelengths, 

among others) was also utilized. Fig 5 depicts the 

arrangement of papers according to the data category 

concerned. The papers discussed an array of vegetation 

pertaining to various groups, such as grassy, governing 

grassy, broadleaf, narrow-leaf, monocotyledonous, 

dominant broad-leaf, dicotyledonous, etc. 
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Fig 3: The distribution of Machine learning techniques used for 

weed detection in corn fields 

 

 
 

Fig. 4: Displays the distribution frequency of machine learning 

tasks used for detecting weeds in corn fields 
 

 
 

Fig 5: Illustrates the frequency distribution of different data types 

utilized in the detection of weeds in corn fields 
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