
 

709 

  
Int. j. adv. multidisc. res. stud. 2023; 3(3):709-720 

 

Application of Space-Time Localized Radial Basis Functions Scheme to Solve the 

American and European Options Pricing Models 

1 Mohammed Hamaidi, 2 Ahmed Naji 
1, 2 Department of Mathematics, Faculty of Sciences and Technology, University of Abdelmalek Essaadi, Tangier, Morocco 

  Corresponding Author: Mohammed Hamaidi 

Abstract 

In this paper, we investigate the use of space-time localized 

radial basis function collocation method to solve the options 

pricing European and American models. The application of 

the proposed method to options pricing European and 

American models open a new area in the development of 

this technique for solving partial differential equations 

(PDEs) with variable coefficients. Beside the known 

advantages of the method when solving the PDEs with 

constant coefficients, re-computing the resulting matrix and 

solving the algebraic system at each time level, as done by 

time stepping method when solving PDEs with variable 

coefficients, are avoided. In herein, the numerical 

approximation of the optimal exercise boundary in the case 

of American options is obtained effectively by using a new 

algorithm of penalty iterative scheme. The same technique is 

applied to the two and three-dimensional American options 

without boundary conditions when considering the problem 

in the space domain. Results are compared with analytical 

and available published numerical results. Obtained results 

indicate that the proposed scheme offers accurate 

approximation compared with existing numerical methods 

applied to such option pricing European and American 

models. 

Keywords: Black-Scholes problem, European and American options, American Multi-Asset Option Pricing, Localized Radial 
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1. Introduction 

Solving partial differential equations arising in financial markets is nowday considered as one of the most important problems 

that attract the attention of both mathematicians and scientists. Many techniques have been developed and applied to solve 

European and American options. Finite element method, boundary element method and finite differential method are the most 

famous used mesh methods. All of them are based on seeking the approximate solution at each time level  using time 

discretization scheme. 

Recently, some papers treating the multi-asset American put option were published. Among them, we can mention the work 

based on a semi-implicit finite element scheme published by R. Zhang et al. [5]. They have used a penalty method to transform 

the linear complementary problem (LCP) defining the multi-asset American put option into a nonlinear parabolic problem on 

an unbounded domain. For solving the problem, they implemented the far field boundary condition to determinate a 

rectangular truncated domain after variables change. The mentioned mesh methods show difficulties when it has to be applied 

to option pricing problem with number of multi-asset great than four. During the last decade and under the intensive research 

on meshless methods, many papers [6–18] have been published concerning the application of radial basis function approach as 

meshfree method for solving PDEs in financial option pricing. In many of these works, equations governing European and 

American options were firstly time discretized by using time integration schemes and then, the obtained option pricing 

equations in space were solved at each time level by using radial basis function meshless method. To complete the use of such 

meshless method and because of the use of time integration scheme, time stability analysis issue has to be discussed. In  [15] two 

schemes of a meshless local weak form of the boundary element method (LBEM) for option pricing are presented. The first 

one is based on the moving least squares approximation (MLS) and the second on Wu’s compactly supported radial basis 

functions. The problem of the free boundary arising in American option is reduced to a problem with an unbounded fixed 

boundary using a Richardson extrapolation technique. The problem is then solved in a truncated domain , where  

is chosen five time of the strike price . The -method is used for time discretization and the approximate solution is 

obtained at every time step level by solving a sparse system of linear equations. In  [16] J.A. Rad et al. had also used the radial 

basis point interpolation (RBPI) to solve the Black-Scholes model for European and American options. To overcome the 
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problem due to the free boundary that arises in the case of American options, three different approaches are used: the projected 

successive over relaxation method (PSOR), the Bermudan approximation and the penalty approach. For time discretization the 

 -method is adopted, and for the semi-infinite domain consideration an exponential change of variables is implemented to 

transform the unbounded domain  into bounded one . Only single-asset option is treated in this work. In [19] J. 

Martı́n Vaquero et al applied penalty method given in [16] and the stabilized explicit Runge-Kutta scheme to solve multi-asset 

American options. The truncated domains are chosen to be  and  for 1-D examples,  for 2-D 

example and  for 3-D example. In all these works, they made difference between space and time 

variables and discussed the time stability analysis. 

In this paper the numerical scheme developed by Hamaidi et al. in [1–3], called the space-time localized RBF collocation method 

is applied to solve the Black-Scholes equations governing European and American options. The technique is based on the 

transformation of the -dimensional (PDE) into -dimensional one by combining the -dimensional vector space 

variable and -dimensional time variable in one -dimensional variable vector and solving the problem without using 

any time discretization techniques like implicit, explicit, the method-of-line approach and others as done by classical methods. 

We can also recall that the applied method generate a sparse and square system matrix which is one of the advantages of the 

method in respect to other formulations of space-time meshless methods given in [21–24]. Another advantage of the presented 

space-time localized RBF collocation method in comparison to other, as it was mentioned in [1], is that the time stability 

analysis discussion is avoided. This advantage is in good concordance with the results mentioned by Hon and Xian  [8] which is 

"In the case of the European options, it is shown that the major numerical error is from the time integration instead of the 

spatial approximation by comparing with the analytical solution". But the main advantage herein is the reduction of 

computation efforts significantly since no need to re-compute the matrix for the resulting algebraic system at each time level, 

unlike the case for others time integration methods used to solve PDEs with time-dependent coefficients. Based on the 

discussion above the considered options can be solved directly without any time steps scheme. For the American options, an 

algorithm of iterative penalty method is necessary for seeking the approximate solution since the problem can be treated as a 

linear complementary one. Following, [12, 14, 20], we can also mention that the two and three asset American options problem is 

treated without any boundary conditions when the problem is considered in space domain.  

The remainder of the paper is as follows. In Section 2, we present the formulation of European and American option pricing 

models and also the penalty formulation of the American option. In Section 3 we recall the space-time localized radial basis 

function collocation method for solving parabolic PDEs. Numerical results of the European option case and comparison with 

analytical solution is given in section 4. In the same section 4, the penalty algorithm for American options valuation and results 

of one, two and three-dimensional put determination and its comparison with the binomial method and some other numerical 

techniques are also given. Conclusion is presented in the last Section 5. Furthermore, this numerical scheme proposed herein is 

of a general nature and can be used for solving other higher dimension option pricing problems.  

 

2. European and American Options Formulation 

In financial literature, it has been demonstrated that the European and American options with maturity  and strike price  on 

an underlying asset  follow the stochastic differential equation. 

 

  (1) 

 

Where  and  are the risk-free interest rate and the volatility of the stock price  respectively. Under some known 

assumptions, the option value  satisfies the one-dimensional Black-Scholes equation defined by 

 

  (2) 

 

Before illustrating how to apply the radial basis functions as a spatial-temporal collocation scheme for options pricing, we first 

give a review of the two options. 

 

2.1 European Options 

First, we consider the one-dimensional European options problem, which satisfies the Black-Scholes equation given by (2). To 

solve numerically this problem, we consider a truncated domain . The problem has a final condition under 

the form  (payoff), and boundary conditions  and . 

The payoff condition is given by 

 

  (3) 

 

Since the the payoff condition (3) is backward in time, we need to use a new state variable  to transform the 

condition into an initial one and get a new form of the equation (2) as follows 

 

  (4) 
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The equation (4) can be solved directly under its form as partial differential equation with variable coefficients or transformed 

into equation with constant coefficients using the map . Hence, the new equation is represented under the form 

 

  (5) 

 

with the following initial and boundary conditions: 

 

  
 

Where, 

 

  (6) 

 

The imposed artificial boundary conditions are given by setting  and  to be 

 

  
 

2.2 American Options 

2.2.1 American One-Asset Option 

In the most published works about the numerical solution of the American options valuation, the problem was treated as a free 

boundary value problem. In our best knowledge, up to now no analytical formula for such problem is available. The American 

options allow early exercise at any time  with optimal exercise stock value . The difficulty to compute 

an accurate approximate solution of the American options using the most numerical methods is due to the unknown free 

boundary . 

Until optimal exercise, we have the following equation 

 

   (7) 

 

and at the optimal exercise moment we define the following condition 

 

   (8) 

 

In American option, we always have 

 

  (9) 

 

So, the American options equation to be solved is under the following form: 

 

   (10) 

 

Based on these equations (9) and (10), the American option satisfies the following strong form of the Linear Complementarity 

Problem (LCP) 

 

  (11) 

 

Various penalty methods were implemented in [5, 6, 19, 25–27] to solve the American options problem under its LCP form. In 

herein we adopt a new algorithm based on the penalty method given in [6, 27]. For this approach, a simple penalty term is added 
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to the main equations to enforce the early exercise constraint. The solution of the resulting nonlinear equation can be computed 

via a penalty iteration method that is based on solving a sequence of partial differential equations of the form: 

 

 (12) 

 

Where  and  is a penalty parameter greater than one. 

 

2.2.2 American Multi-Asset Option 

Generalizing the American one-Asset option, it is well known that the mathematical model of American multi-asset option can 

be defined by the partial differential equation: 

 

  
 

By using the variable change , can be seen as a Linear Complementarity Problem of the form: 

 

  (13) 

 

Where  is the value of the contract,  is the value of the  underlying asset ,  is the number of underlying 

assets,  is the correlation between asset  and asset , and  is the risk-free interest rate. The function  is the payoff 

defined by 

 

  
 

Where  is the weight of the  asset and the space domain is . 

Following the same technique applied to American one Asset option, the problem (13) is transformed into a penalty one 

defined by 

 

  
 

 

3. Space-Time Localized RBF Method Formulation 

To recall the space-time localized RBF method defined in, let  be a bounded domain with a sufficiently regular 

boundary  and consider the following time-dependent boundary value problem 

 

    
 

Where  is a differential operator of second order with variable coefficients representing either European or American 

pricing model and written under the following general form 

 

  
 

 is a boundary operator depending on the kind of boundary condition treated and ,  and  are sufficiently regular data 

functions. 

To solve the problem we first need to transform the -dimensional time depend problem (14-16) into a -dimensional 

boundary value problem in space-time domain . Fig 1 represents the space-time domain concept of 1D and 2D 

domains. The boundary of the new formulated domain  is given by . 
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Fig 1: Space-time domain concept 
 

Following the technique discussed in [1], the problem given by Eqs. (14-16) is then formulated by considering the Eq. (14) 

given by  as a domain equation in  and Eqs. (15) and (16) as boundary conditions 

on  and  respectively. To complete the set of boundary conditions, we also consider the Eq. (14) as a 

boundary condition on . 

The resulted space-time problem is then defined by 

 

  (17) 

 

Where  in ,  and  on . 

To solve such problem using the localized RBF method, we first need to drive the local approximation of the unknown 

function  and then the local approximation of  and  can be determined easily base on the components 

of the function . So, the local approximation of  in an influence domain  associated to a selecting collocation point 

 and containing a number  of nearest neighboring points  (Fig 2), is given by: 

 

  (18) 

 

Where  are the unknown coefficients,  is the Euclidean norm, and  is the chosen RBF. There is many different RBF 

to be chosen. Among them we can mention the multiquadric function , where  is the shape parameter, that 

has been proved, in many references, to be the most effective one these last decade. 

 

 
 

Fig 2: Schematic showing five-nodes, nine-nodes and thirteen-nodes local domains  for 2D (left) and seven nodes local domain for 3D 

(right) 
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Using collocation method, Eq. (18) is then applied to all collocation points  belonging to the influence domain  of 

, we have the following  linear system 

 

  (19) 

 

Where 

 

 ,  and . 

 

Then, the problem of seeking the expansion coefficients  is transformed into a determination of the values of solution 

 at each center point  by using the equation 

 

  (20) 

 

Hence, Eq. (18) can be written as: 

 

  (21) 

 =  

 

Where, 

 

  
 

By padding the vector  with zeros based on the mapping between  and  we get a new vector  with  components. 

We then formulate Eq. (21) in terms of global  as 

 

  (22) 

 

The local approximation of equations in the system (17) can be determined by applying the differential operators  and  to 

the equation (18) for any selected center point  in any sub-domain . For , we obtain the following equation 

 

  (23) 

 

In the same way, for a center  on the boundary , we have 

 

   (24) 

 

Where ,  and  

 

To switch from local systems (23) and (24) to global ones, the vector  is incorporated in the 

systems (23-24) by adding zeros at the proper locations based on the mapping of  to , and considering  and  as 

the global expansions of  and  respectively. 

The global system of Eq. (23) and (24) are then written under the form: 

 

   (25) 

 

and 

 

  (26) 

 

By collocating at all domain centers points , where  is their number, using Eq. (25) and collocating at all boundary 

points  using (26), we get the following final sparse linear system of equations 
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Where: 

 

  
 

The approximate solution at the interpolation points  can be obtained by solving the above sparse linear system of 

equations. 

 

4. Numerical Experiments 

In this section, we investigate the numerical solution of the European and American put options using space-time localized 

RBF collocation method to show its efficiency and accuracy for solving such problem. The Black-Scholes equation can be 

solved into two different ways. It can be solved either directly by considering it as a partial differential equation with variable 

coefficients or as partial differential equation with constant coefficients. Many different examples are solved herein and the 

results obtained are compared to some numerical published results. The accuracy of the numerical tests is measured using the 

root mean squared error (RMSE) defined by 

 

  
 

Where  and  are the exact and the approximate solution of the option pricing problem treated at the  collocation points 

 respectively and  is the space dimension of the problem domain. 

 

4.1 Numerical Computation of European Options 

To validate the proposed method face to option pricing problems, we first solve the European option problem represented by 

two examples 1 and 2. 

 

Example 1  

For this first example, results obtained are compared to the exact solution and also to some published results that using 

meshfree method combined with explicit time integration scheme as the explicit first order backward difference (BD1), second 

order Runge-Kutta (RK2) and fourth order Runge-Kutta (RK4) methods [8]. All these methods are based on the use of radial 

basis functions as a basis functions for the collocation scheme and solved the problem in the domain  at each time 

level. Their chosen parameters are , ,  and the number of used centers in the x-axe is . For 

comparison we use the same problem’s parameters and we set the space-time domain and centers to be  

and  respectively. Where  is the number of points in the time axe. 

The problem is solved under two different forms. On one hand as a PDE with variable coefficients and on the other hand as a 

PDE with constant coefficients. For numerical test, the MQ-RBF is taken under the form  and the shape parameter 

of the MQ-RBF is chosen to be  for PDEs with variable coefficients and  for PDEs with constant 

coefficients case. The number of nearest nodes is set to be  in the entire space-time domain. The comparison of these 

numerical solutions with the exact, second order and fourth order Runge-Kutta method and the explicit first order backward 

difference (BD1) solutions is shown in Table 1. 

 
Table 1: Comparison of results obtained using space-time localized RBF collocation method to exact and other numerical schemes [8] for the 

European option, Example 1 
 

Stock S Exact Explicit Time Schemes [8] Space-Time Scheme 

  RK4 RK2 BD1 Variable coefficients Constant coefficients 

     =0.056 = 0.013 

2 7.7531 7.7531 7.7531 7.7531 7.7545 7.7532 

4 5.7531 5.7531 5.7531 5.7531 5.7531 5.7533 

6 3.7532 3.7532 3.7531 3.7533 3.7532 3.7534 

7 2.7568 2.7568 2.7564 2.7566 2.7572 2.7574 

8 1.7987 1.7984 1.7979 1.7985 1.7999 1.7994 

9 0.9880 0.9873 0.9881 0.9902 0.9872 0.9860 

10 0.4420 0.4412 0.4429 0.4457 0.4400 0.4383 

11 0.1606 0.1602 0.1612 0.1627 0.1599 0.1581 

12 0.0483 0.0482 0.0482 0.0485 0.0482 0.0475 

13 0.0124 0.0123 0.0121 0.0119 0.0127 0.0124 

14 0.0028 0.0028 0.0026 0.0024 0.0030 0.0029 
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15 0.0006 0.0006 0.0005 0.0004 0.0007 0.0006 

16 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 

RMSE  3.28E-04 4.06E-04 1.35E-03 8.25E-04 1.40E-03 

 

According to these results, the proposed method is comparable to others. We can mention that the benefit is that we solve the 

problem only once in our case. Finally, we can conclude that good accuracy are obtained for the two formulations, variable and 

constant coefficients, when solving Black-Scholes equation in the case of European put options using space-time localized 

RBF method. 

 

Example 2 

One of the advantage of the proposed technique over other time integration schemes is that the stability analysis for time 

discretization is no longer needed. To show that, we compute the numerical solutions of the European put option by using 

different values of  and  such that the stability condition of explicit time integration schemes, for some given  and , 

cannot provide a convergent solution. The quotient  has many different values great and less than one (  and ). 

Two simulations are given for this example. In the first simulation we set  and we take different values of . And in 

the second simulation we set  and we choose different values of . The shape parameter value of the MQ radial 

function used in the two simulation is set to be  and  respectively. The space-time domain is . 

For this example 2 the treated PDE is considered under the form of constant coefficients. 

Results obtained and their comparison to the exact solution are depicted in Tables 2 and 3. We can then observe from these 

given results that the numerical accuracy of the space-time scheme is comparable to the analytical solution. So, it can be 

remarked that the stability of the scheme is asserted and the error RMSE is decreasing with respect to the  and  values. We 

can than concluded that the space-time method shows a reasonably good approximation to the solution for these different 

values of  and . 

 

Table 2: Comparison of results obtained by the space-time schemes for Example 2 - Simulation 1, with different  and  using the 

constant coefficients formulation 
 

Stock S Exact Space-Time scheme 

       
2 7.7531 7.7513 7.7523 7.7526 7.7527 7.7528 

4 5.7531 5.7509 5.7521 5.7528 5.7528 5.7529 

6 3.7532 3.7515 3.7529 3.7528 3.7530 3.753 

7 2.7568 2.7572 2.7574 2.7570 2.7570 2.7570 

8 1.7987 1.8015 1.8013 1.7994 1.7998 1.7993 

9 0.9880 0.9780 0.9899 0.9867 0.9882 0.9878 

10 0.4420 0.4246 0.4423 0.4393 0.4414 0.4411 

11 0.1606 0.1493 0.1603 0.1588 0.1606 0.1603 

12 0.0483 0.0452 0.0503 0.0480 0.0486 0.0486 

13 0.0124 0.0128 0.0133 0.0127 0.0126 0.0125 

14 0.0028 0.0037 0.0036 0.0031 0.0030 0.0029 

15 0.0006 0.0011 0.0009 0.0007 0.0006 0.0006 

16 0.0001 0.0003 0.0002 0.0001 0.0001 0.0001 

RMSE  6.57E-03 1.18E-03 1.02E-03 4.03E-04 3.53E-04 

 

Table 3: Comparison of results obtained by the space-time schemes for Example 2 - Simulation 2, with different  and  using the 

constant coefficients formulation 
 

Stock S Exact Space-Time scheme 

       
2 7.7531 7.7528 7.7528 7.7528 7.7529 7.7528 

4 5.7531 5.7529 5.7529 5.7529 5.7529 5.7529 

6 3.7532 3.7530 3.7529 3.7529 3.7529 3.7529 

7 2.7568 2.7572 2.7572 2.7572 2.7572 2.7572 

8 1.7987 1.7995 1.7995 1.7995 1.7995 1.7995 

9 0.9880 0.9865 0.9867 0.9867 0.9868 0.9868 

10 0.4420 0.4390 0.4393 0.4393 0.4394 0.4394 

11 0.1606 0.1585 0.1587 0.1588 0.1588 0.1588 

12 0.0483 0.0478 0.0480 0.0480 0.0480 0.0480 

13 0.0124 0.0126 0.0127 0.0127 0.0127 0.0127 

14 0.0028 0.0030 0.0031 0.0031 0.0031 0.0031 

15 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007 

16 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

RMSE  1.14E-03 1.03E-03 1.02E-03 9.88E-04 9.90E-04 

 

 

 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

717 

4.2 Numerical Computation of American Options 

The investigation of the method to solve the American put options problem is firstly based on transforming the problem (13) 

by using the penalty approach into a problem under the form 

 

  
 

that can be solved iteratively until we get needed tolerance as shown in the algorithm 1 below: 

 

Algorithm 1 New penalty iterative scheme for solving American Options 

 
Input ,   

Initialize ,  // Possible guesses: V0=0 and V=h  

  

for i=1 to Ni 

//Ni is the number of interior nodes 

//Constructing the i-th line of the linear system 

//Using the flowing lines for each case (Eq 27) 

if Vi < hi then 

LVi + p _ Vi = p _ hi 

Else 

LVi = 0 

end if 

end for 

Constructing the lines of the boundary conditions (BV) 

Solve the linear system 

 

Example 3 

Most of the chosen parameters of this first considered American put option example are extracted from reference [9]. They are 

, ,  and . The truncated domain is taken to be  for variable coefficients problem, so that 

 is the domain for the constant coefficients PDE. During the experiments tests we take ,  and the 

penalty parameter is set to be . Two different shape parameters are chosen  and . The convergence 

criteria of the penalty algorithm 1 is taken to be . Following [9] the artificial boundary condition are used for the 

treatment of the considered example 3. The problem is solved iteratively following the algorithm 1 until the accuracy needed is 

achieved. In Table 4, we show the results obtained and the results of Binomial method and those published in  [9] using RBFs 

method with explicit scheme. Taken the results obtained using Binomial method as a reference, it can be concluded from Table 

4 that although the discretization time step of the explicit scheme adopted in is so small, since , the RMSE error of 

the space-time scheme is less than that obtained with explicit scheme. So, we can conclude that the space-time scheme gives a 

good approximation to the American put option compared to results given in [9]. At , Table 4 shows that the accurate 

result compared to the Binomial method, as a reference, is achieved with the space-time scheme. For more comparison we 

investigated another numerical test with small values of  and  with a truncated space domain  which 

is small that the first taken one. The RMSE obtained for this last simulation of example 3, is  which is better than results 

found in [9] for the simulation with  and  and almost the same as the RMSE obtained with  and 

. For our last test the shape parameter of the MQ-RBF is chosen . All simulations are done using constant 

coefficients formulation of the PDE. 

 
Table 4: Comparison of accuracy for the American option with , , , ,  , . 

 

Stock S Binomial Space-Time Scheme RBFs method with explicit schemes 

      
80 20.2689 20.2613 20.2650 20.2916 20.2889 

85 16.3467 16.3344 16.3407 16.3715 16.3644 

90 13.1228 13.1095 13.1176 13.1446 13.1346 

95 10.4847 10.4747 10.4835 10.5077 10.4956 

100 8.3348 8.3246 8.3316 8.3608 8.3482 

105 6.6071 6.5961 6.6027 6.6257 6.6133 

110 5.2091 5.2090 5.2147 5.2299 5.2186 

115 4.0976 4.1014 4.1057 4.1131 4.1034 

120 3.2059 3.2105 3.2122 3.2246 3.2167 

140 1.1789 1.1925 1.1879 1.1860 1.185 

160 0.4231 0.4320 0.4251 0.4237 0.426 

180 0.1502 0.1545 0.1496 0.1491 0.1518 

200 0.0529 0.0537 0.0522 0.0522 0.0543 

RMSE  0.0089 0.0051 0.0180 0.0107 
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Example 4 Two-Asset American Put 

For this example, we apply the penalty method developed in the previous section to compute the two-asset American put 

option price. The problem has the form 

 

  
 

with  as initial boundary condition. The used parameter values for this 

considered problem are  and the truncated 

space domain  is . For other numerical parameters values, we chose , the shape parameter  and 

the number of nearest points is chosen to be . The penalty parameter is taken to be  and the tolerance is 

. 

In many works artificial boundary conditions like the linear boundary condition or the far-field and near-field boundary 

conditions were used. A technique that is common in financial industry. Another choice of the boundary conditions is 

 and , for , where  are determined by solving the associated -asset of 

American put option pricing problem. This last choice is not adopted herein because of the fact that there is a possibility that 

the errors in lower dimensions can be transformed and enlarged in higher dimensions, and also these choices are artificial. So, 

In herein we follow [12, 14, 20] and solve the problem without setting any conditions on the space boundary . Janson and Tysk 

[20] have shown that the problem we consider here is actually well posed without boundary conditions as long as the growth at 

infinity is restricted. To numerically validate our choice of no boundary conditions, we compare the single-asset American put 

option to the two-asset option price at the boundary .The PDE is solved under its original form as PDE with variable 

coefficients without making any variable change. Fig 3 shows the plot of the numerical solution computed at time  ( ) 

and the payoff function. Results of comparison are described by Fig 4. We remark that our results are accurate compared to 

other published works. 

 

 
 

Fig 3: Option price at t = T for two-assets American put option (left) and the payoff function (right) 

 

 
 

Fig 4: Option price at S2 = 0 and t = T for two-assets American put option (left) and single-asset (right) 
 

Table 5: Comparison of two-asset solution at each boundary  to the associated one-asset problem at . 

(MAE=Maximum Absolute Error). 
 

  
MAE RMSE MAE RMSE 

1.63E-03 4.68E-04 3.70E-03 1.32E-03 
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In Table 5, we compare the obtained numerical solution at  with those obtained by solving the associated 1D 

problems. For the condition , , the numerical value is zero. We can conclude that the choice is valid 

comparing to these conditions. We can also mention that although the shape parameter is chosen in the large interval  

we still have a stable results. 

 

Example 5-Three-Asset American Put 

As a last example we apply the proposed technique to compute the three-asset American put option price. The problem 

considered has the form: 

 

  
 

With the following initial condition: 

 

  
 

The parameter values of this considered problem are given as  

 and . 

For this example, the truncated space domain is  and , which means that the number of 

collocation points in space-time domain  is . The number of nearest nodes and the shape parameter are and 

 respectively. The detail about the choice of the number of nearest point for a problem with  -dimension is given in. 

The penalty parameter is set to be  and the convergence criteria of the penality algorithm 1 is . The 

problem is solved without any space boundary condition as it has been done for the two-asset American put option (Example 

4). Again, to validate numerically our choice of no boundary conditions, we compare the three-asset solution at each boundary 

to the associated two-asset problem using the same parameters. Table 6 depicted the results of comparison. In Table 7, we 

compare the numerical solution to the condition  at each boundary with , for . Table 7, Table 6 and 

Fig. [Fig 5] show that we have acceptable results and proving the validity of our choice. 

 

  
 

Fig 5: Two-asset numerical solution (left); Three-asset numerical solution with  (right) 
 

Table 6: Comparison of three-asset solution at each boundary  to the associated two-asset problems at  
 

   
MAE RMSE MAE RMSE MAE RMSE 

1.24E-02 2.60E-03 1.90E-02 3.18E-03 2.19E-02 2.58E-03 

 

Table 7: Comparison of three-asset solution at each boundary to the condition  at  
 

   

      
3.21E-05 4.66E-06 4.66E-05 7.36E-06 2.21E-04 2.29E-05 

 

5. Conclusion 

Application of the space-time localize RBFs method, developed in, to the options pricing is presented. This technique is based 

on the local radial basis function without differentiating between space and time variables. Unlike the other methods, the 

proposed method don’t need any time discretization and solve the problem as a new formulated one. The system matrix 

obtained is sparse which ameliorate the speed and the accuracy when solving the algebraic system. It also benefit from the 

following advantages: 

1. Time discretization as implicit, explicit, -method, method-of-line approach and other are not applied, 

2. The time stability analysis is not discussed, 

3. Re-computation of the resulting matrix at each time level as done for other method for solving partial differential 

equations (PDEs) with variable coefficients is avoided and the matrix is computed once. 
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The problem of American options is treated as a linear complementary problem and solved as a penalty one in an iterative way. 

The results of two- and three-asset American option price presented in this paper indicate that such artificial boundary 

conditions are not, in fact, necessary. Numerical results show that this space-time localized radial basis functions method, 

offers good accuracy in the computation of both the European and the American Options. The good results obtained with this 

new numerical scheme prove that this technique presents an alternative computational algorithm to solve higher dimension 

time-depend financial problem. 
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