Int. j. adv. multidisc. res. stud. 2023; 3(3):517-522

International Journal of Advanced Multidisciplinary Research and Studies

ISSN: 2583-049X

Received: 11-04-2023 **Accepted:** 21-05-2023

On Pseudo T - Birecurrent Finsler Space in Berwald Sense

¹Abdalstar A Saleem, ²Alaa A Abdallah

¹Department of Mathematics, Faculty of Sciences, Aden University, Aden, Yemen ²Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India

Corresponding Author: Alaa A Abdallah

Abstract

In this present paper, we introduce a Finsler space which Pseudo curvature tensor satisfies the birecurrence property in sense of Berwald. Also, we prove that a flat pseudo T – birecurrent space for H_{ikh}^{i} exist. Certain identities

belong to this space have been studied. Finally, the projection on indicatrix with respect to Berwald's connection for the tensors whose behave as birecurrent have been discussed.

Keywords: Pseudo T – Birecurrent Space, Flat Pseudo T – Birecurrent Space, Projection on Indicatrix

1. Introduction

The recurrence property has been studied by the Finslerian geometrics. Sinha ^[12] introduced the torsion tensor T_{jk}^{i} and curvature tensor T_{jkh}^{i} from the deviation tensor T_{j}^{i} . Dabey and Singh ^[2] and Pandey and Dwivedi ^[4, 5] considered the space equipped curvature tensor T_{jkh}^{i} is recurrent and called it T – recurrent Finsler space. They also considered there in projectively flat –T – recurrent space and obtained certain results belong to these spaces. Saleem ^[9] studied the flat of recurrent curvature tensor fields in Finsler space. Further, Qasem and Saleem ^[7], Pandey and Verma ^[6], Saleem and Abdallah ^[10], Singh ^[11] and Sinha ^[12] were studied on birecurrent curvature tensor fields in Finsler space. Saleem and Abdallah ^[10] study the projection on indicatrix for some tensors whose satisfy the birecurrence property.

Let us consider an n-dimensional Finsler space F_n equipped with the line elements (x, y) and the fundamental metric function F is positively homogeneous of degree one in y^i . Berwald covariant derivative $\beta_k T_j^i$ of an arbitrary tensor field T_j^i with respect to x^k is given by ^[1, 8]

$$\beta_k T_j^i = \partial_k T_j^i - \left(\dot{\partial}_r T_j^i \right) G_k^r + T_j^r G_{rk}^i - T_r^i G_{jk}^r \,.$$

The processes of Berwald covariant differentiation with respect to x^h and the partial differentiation with respect to y^k commute according to

(1.1) a)
$$\dot{\partial}_j \beta_l T_h^i - \beta_l \dot{\partial}_j T_h^i = T_h^r G_{klr}^i - T_r^i G_{klh}^r$$
,

where the tensor G_{jkh}^{i} is symmetric in their lower indices and defined by

(1.1) b)
$$G^{i}_{ikh}y^{j} = 0$$
.

Berwald's covariant derivative of the vectors y^{j} and l^{j} vanish identically, i. e.

(1.2) a)
$$\beta_i y^j = 0$$
 and b) $\beta_i l^j = 0$,
where

c) $l^j = \frac{y^j}{F}$.

Definition 1.1: The projection of any tensor T_i^i on indicatrix is given by ^[3, 10]

(1.3)
$$p.T_j^i = T_\beta^\alpha h_\alpha^i h_j^\beta,$$

Where the angular metric tensor is homogeneous function of degree zero in y^{i} and defined by

(1.4)
$$h_i^i = \delta_i^i - l^i l_i.$$

Definition 1.2: If the projection of a tensor T_j^i on indicatrix I_{n-1} is the same tensor T_j^i , then the tensor is called an indicatrix tensor or an indicatory tensor.

2. Preliminaries

In this section, we introduce some important concepts and definitions. The pseudo deviation tensor T_j^i is positively homogeneous of degree 2 in y^i and defined by ^[12]

$$T_{j}^{i} = -\left\{H\delta_{j}^{i} + \frac{1}{n+1}\left(\dot{\partial}_{r}H_{j}^{r} - \dot{\partial}_{j}H\right)y^{i}\right\}$$

The pseudo torsion tensor T_{ik}^{i} is positively homogeneous of degree 1 in y^{i} and defined by

$$T_{jk}^{i} = \frac{1}{n+1} \left\{ y^{i} H_{rkj}^{r} + 2\delta_{j}^{i} \left(H_{k} + \dot{\partial}_{k} H \right) \right\}.$$

The pseudo curvature tensor T_{jkh}^{i} is positively homogeneous of degree 0 in y^{i} and defined by

$$T_{jkh}^{i} = \frac{1}{n+1} \left\{ \delta_{[j}^{i} H_{rkh}^{r} + y^{i} \dot{\partial}_{j} H_{rkh}^{r} + 2 \delta_{[k}^{i} \left(H_{(j)h} + \dot{\partial}_{h]} \dot{\partial}_{j} H \right) \right\}$$

These tensors satisfy the following [12]

(2.1) a) $T_{jkh}^{i} y^{j} = T_{kh}^{i}$, b) $T_{jkh}^{i} = \dot{\partial}_{j} T_{kh}^{i}$ c) $T_{kh}^{i} y^{k} = T_{h}^{i}$ and d) $T_{jkh}^{i} = W_{jkh}^{i} - H_{jkh}^{i}$,

where the curvature tensor H_{jkh}^{i} , torsion tensor H_{jk}^{i} and deviation tensor H_{j}^{i} are positively homogeneous of degree zero, one and two in y^{i} , respectively. And satisfy the following

(2.2) a) $H^{i}_{jkh}y^{j} = H^{i}_{kh}$, b) $H^{i}_{kh}y^{k} = H^{i}_{h}$, c) $H^{i}_{jki} = H_{jk}$, d) $H^{i}_{jki} = H_{jk}$, e) $H_{k}y^{k} = (n-1)H$ and f) $\dot{\partial}_{j}H_{k} = H_{jk}$. The Bianchi identity for the curvature tensor H^{i}_{ikh} is given by

(2.2) g)
$$H^{i}_{jkh} + H^{i}_{khj} + H^{i}_{hjk} = 0$$

The projective curvature tensor W_{jkh}^{i} , torsion tensor W_{jk}^{i} and deviation tensor W_{j}^{i} are positively homogeneous of degree zero, one and two in y^{i} , respectively. And satisfy the following ^[8]

(2.3) a)
$$W_{jkh}^{i} y^{j} = W_{kh}^{i}$$
, b) $W_{kh}^{i} y^{k} = W_{h}^{i}$ and c) $W_{jki}^{i} = 0$.

The Bianchi identity for the projective curvature tensor W_{ikh}^{i} is given by [11]

(2.3) d)
$$W_{jkh}^i + W_{khj}^i + W_{hjk}^i = 0$$
.

A Finsler space called a pseudo T – recurrent space if the curvature tenser T_{ikh}^{i} satisfies ^[4, 5]

(2.4)
$$\beta_l T^i_{jkh} = \lambda_l T^i_{jkh}, \ T^i_{jkh} \neq 0,$$

where λ_l is non-zero covariant vector field. Since the Finsler space is projective flat, then we have ^[8]

(2.5) a)
$$W'_{ikh} = 0$$
, b) $W'_{kh} = 0$ and c) $W'_{i} = 0$.

3. Pseudo T – birecurrent space

In this section, we introduce a Finsler space which the curvature tensor T_{jkh}^{i} is birecurrent in sense of Berwald. Also, we obtained flat pseudo T – birecurrent space.

Definition 3.1: A Finsler space F_n which the curvature tensor T_{jkh}^i satisfies the condition

(3.1)
$$\beta_m \beta_l T^i_{jkh} = a_{lm} T^i_{jkh}, \ T^i_{jkh} \neq 0,$$

where a_{lm} recurrence covariant tensor field of second order, this space called a *pseudo* T – birecurrent space. Differentiating

(2.4) covariantly with respect to x^m in sense of Berwald, we get

$$\beta_m \beta_l T^i_{jkh} = \left(\beta_m \lambda_l\right) T^i_{jkh} + \lambda_l \beta_m T^i_{jkh}$$

In view of (2.4), the above equation becomes

$$\beta_m \beta_l T_{jkh}^i = \left(\beta_m \lambda_l\right) T_{jkh}^i + \lambda_l \lambda_m T_{jkh}^i$$

Above equation can be written as the condition (3.1) where $a_{lm} = (\beta_m \lambda_l) + \lambda_l \lambda_m$. Thus, we conclude

Theorem 3.1: Every pseudo T – recurrent space which the recurrence vector field satisfies $(\beta_m \lambda_l) + \lambda_l \lambda_m \neq 0$ is a pseudo T – birecurrent space.

Transvecting the condition (3.1) by y^{j} , using (2.1a) and (1.2a), we get

 $(3.2) \qquad \beta_m \beta_l T_{kh}^i = a_{lm} T_{kh}^i.$

Transvecting (3.2) by y^k , using (2.1c) and (1.2a), we get

(3.3) $\beta_m \beta_l T_h^i = a_{lm} T_h^i$. Thus, we conclude

Theorem 3.2: In pseudo T – birecurrent space, the torsion tensor T_{kh}^{i} , deviation tensor T_{h}^{i} are birecurrent.

Let us consider a Finsler space whose the curvature tensor T_{ikh}^{i} is a projective flat, i.e. satisfies (2.5). Differentiating (2.1d)

covariantly with respect to x^{l} and x^{m} in sense of Berwald, using (2.5a) and the condition (3.1), we get

(3.4)
$$\beta_m \beta_l H^i_{jkh} = a_{lm} H^i_{jkh}.$$

Transvecting (3.4) by y^{j} , using (2.2a) and (1.2a), we get

 $(3.5) \qquad \beta_m \beta_l H^i_{kh} = a_{lm} H^i_{kh}.$

Transvecting (3.5) by y^k , using (2.2b) and (1.2a), we get

 $(3.6) \qquad \beta_m \beta_l H_h^i = a_{lm} H_h^i.$

Contracting the indices i and h in (3.4) and using (2.2c), we get

$$(3.7) \qquad \beta_m \beta_l H_{kh} = a_{lm} H_{kh} \,.$$

Transvecting (3.7) by y^k , using (2.2d) and (1.2a), we get

$$(3.8) \qquad \beta_m \beta_l H_h = a_{lm} H_h$$

Transvecting (3.8) by y^h , using (2.2e) and (1.2a), we get

$$(3.9) \qquad \beta_m \beta_l H = a_{lm} H$$

From (3.4), (3.5), (3.6), (3.7), (3.8) and (3.9), we conclude that H_{jkh}^i , H_{kh}^i , H_{h}^i , H_{kh} , H_{h} and H satisfy the birecurrence property. Since the Finsler space is flat pseudo, i.e. (2.5a) satisfies in (2.1d). Thus, we conclude

Theorem 3.3: In flat pseudo T – birecurrent space, the curvature tensor H_{jkh}^{i} , torsion tensor H_{kh}^{i} , deviation tensor H_{h}^{i} , Ricci tensor H_{kh} , curvature vector H_{h} and curvature secular H are birecurrent.

Let us consider pseudo T – birecurrent space, i.e., characterized by the condition (3.1). Differentiating (3.8) partially with respect to y^k , we get

$$\dot{\partial}_k \beta_m \beta_l H_h = (\dot{\partial}_k a_{lm}) H_h + a_{lm} (\dot{\partial}_k H_h).$$

Using commutation formula exhibited by (1.1a) for $\beta_{l}H_{h}$ in above equation and using (2.2f), we get

$$\beta_{m}\dot{\partial}_{k}\beta_{l}H_{h} - \beta_{r}H_{h}G_{klm}^{r} - \beta_{l}H_{r}G_{khm}^{r} = (\dot{\partial}_{k}a_{lm})H_{h} + a_{lm}H_{kh}$$

Again, applying commutation formula exhibited by (1.1a) for H_h in above equation and using (3.7), we get

$$-\left(\beta_m H_r\right)G_{khl}^r - H_r\left(\beta_m G_{khl}^r\right) - \left(\beta_r H_h\right)G_{kml}^r - H_h\left(\beta_r G_{kml}^r\right) - \beta_r H_h G_{klm}^r - \beta_l H_r G_{klm}^r = (\partial_k a_{lm})H_h$$

Transvecting above equation by y^{l} , using (1.2a) and (1.1b), we get

International Journal of Advanced Multidisciplinary Research and Studies

$$-y^{l}\beta_{l}H_{r}G_{khm}^{r}=y^{l}\left(\dot{\partial}_{k}a_{lm}\right)H_{h}.$$

Transvecting above equation by y^h , using (1.2a), (1.1b) and (2.2e), we get

$$y^{l}\left(\dot{\partial}_{k}a_{lm}\right)=0,$$

where $H \neq 0$, which can be written

$$a_{km} = \dot{\partial}_{k} \left(a_{lm} y^{l} \right)$$

$$a_{km} = \dot{\partial}_{k} \left[\dot{\partial}_{m} \left(a_{ls} y^{s} \right) y^{l} \right]$$

$$a_{km} = \dot{\partial}_{k} \left[\dot{\partial}_{m} \left(a_{ls} y^{s} y^{l} \right) - a_{ms} y^{s} \right]$$

$$a_{km} = \dot{\partial}_{k} \dot{\partial}_{m} \left(a_{ls} y^{s} y^{l} \right) - (\dot{\partial}_{k} a_{sm}) y^{s} - a_{mk}.$$

Which may be rewritten as

$$(3.10) \quad a_{km} + a_{mk} = \partial_k \partial_m \emptyset,$$

where $\emptyset = a_{ls} y^s y^l$.

Thus, we conclude

Theorem 3.4: In pseudo T – birecurrent space, from (3.10), the symmetric part if the recurrence tensor is birecurrent derivative of the scaler field.

Differentiating (3.2) partially with respect to y^{j} , we get

$$\dot{\partial}_{j}\beta_{m}\beta_{l}T_{kh}^{i} = \left(\dot{\partial}_{j}a_{lm}\right)T_{kh}^{i} + a_{lm}\left(\dot{\partial}_{j}T_{kh}^{i}\right).$$

Using commutation formula exhibited by (1.1a) for $\beta_l T_{kh}^i$ in above equation and using (2.1b), we get

$$\beta_m \dot{\partial}_j \beta_l T_{kh}^i - \beta_r T_{kh}^i G_{jml}^r + \beta_l T_{kh}^r G_{jmr}^i - \beta_l T_{rh}^i G_{jmk}^r - \beta_l T_{kr}^i G_{jmh}^r = (\partial a_{lm}) T_{kh}^i + a_{lm} T_{jkh}^i$$

Again, applying commutation formula exhibited by (1.1a) for T_{kh}^{i} in above equation and using (2.1b) and (3.1), we get

$$\begin{pmatrix} \beta_m T_{kh}^s \end{pmatrix} G_{jls}^i + T_{kh}^s \left(\beta_m G_{jls}^i \right) - \left(\beta_m T_{sh}^i \right) G_{jlk}^s - T_{sh}^i \left(\beta_m G_{jlk}^s \right) - \left(\beta_m T_{ks}^i \right) G_{jlh}^s - T_{ks}^i \left(\beta_m G_{jlh}^s \right) - \beta_r T_{kh}^i G_{jml}^r$$

$$+ \beta_l T_{kh}^r G_{jmr}^i - \beta_l T_{rh}^i G_{jmk}^r - \beta_l T_{kr}^i G_{jmh}^r = \left(\dot{\partial}_j a_{lm} \right) T_{kh}^i .$$

Transvecting above equation by y^{l} , using (1.1b) and (1.2a), we get

$$y^{l}\left(\beta_{l}T_{kh}^{r}\right)G_{jmr}^{i}-y^{l}\left(\beta_{l}T_{rh}^{i}\right)G_{jmk}^{r}-y^{l}\left(\beta_{l}T_{kr}^{i}\right)G_{jmh}^{r}=\left(\dot{\partial}_{j}a_{lm}\right)y^{l}T_{kh}^{i}$$

Taking skew-symmetric part of above equation with respect to the indices l and m, using (1.1b) and (1.2a), we get (3.11) $y^{l} \left(\beta_{l} T_{kh}^{r}\right) G_{jmr}^{i} + y^{l} \left(\beta_{l} T_{rh}^{i}\right) G_{jmk}^{r} + y^{l} \left(\beta_{l} T_{kr}^{i}\right) G_{jmh}^{r} = 0$.

Thus, we conclude

Theorem 3.5: In pseudo T – birecurrent space, the skew-symmetric part of the recurrence tensor is the identity (3.11) holds.

4. Projection on Indicatrix with Respect to Berwald's Connection

In this section, we studied the projection on indicatrix for the tensors which be birecurrent. Let us consider a Finsler space F_n for the curvature tensor T_{jkh}^i is birecurrent in sense of Berwald, i.e. characterized by (3.1). Now, in view of (1.3), the curvature tensor T_{jkh}^i on indicatrix is given by

(4.1)
$$p.T_{jkh}^{i} = T_{bcd}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} h_{h}^{d}$$
.

Taking covariant derivative of (4.1) with respect to x^{l} and x^{m} in sense of Berwald and using the fact that $\beta_{l}h_{j}^{i} = 0$, then using the condition (3.1) in the resulting equation, we get

$$\beta_m \beta_l \left(p T_{jkh}^i \right) = a_{lm} T_{bcd}^a h_a^i h_j^b h_k^c h_h^d$$

Using (4.1) in above equation, we get

(4.2)
$$\beta_m \beta_l \left(p \cdot T^i_{jkh} \right) = a_{lm} \left(p \cdot T^i_{jkh} \right)$$

This shows that $p \cdot T_{ikh}^{i}$ is birecurrent. Thus, we conclude

Theorem 4.1: The curvature tensor T_{jkh}^{i} on indicatrix in pseudo T – birecurrent space is birecurrent in sense of Berwald.

Let the projection of curvature tensor T^{i}_{jkh} on indicatrix is birecurrent, i.e. characterized by (4.2). Using (1.3) in (4.2), we get

$$\beta_m \beta_l \left(T^a_{bcd} h^i_a h^b_j h^c_k h^d_h \right) = a_{lm} T^a_{bcd} h^i_a h^b_j h^c_k h^d_h \, .$$

Using (1.4) in above equation, we get

$$\begin{split} \beta_{m}\beta_{l}(T_{jkh}^{i}-T_{jkd}^{i}\ell^{d}\ell_{h}-T_{jch}^{i}\ell^{c}\ell_{k}+T_{jcd}^{i}\ell^{c}\ell_{k}\ell^{d}\ell_{h}-T_{jkh}^{a}\ell^{i}\ell_{a}+T_{jkd}^{a}\ell^{i}\ell_{a}\ell^{d}\ell_{h}+T_{jch}^{a}\ell^{i}\ell_{a}\ell^{c}\ell_{k}-T_{jcd}^{a}\ell^{i}\ell_{a}\ell^{c}\ell_{k}\ell^{d}\ell_{h}) \\ =a_{lm}(T_{jkh}^{i}-T_{jkd}^{i}\ell^{d}\ell_{h}-T_{jch}^{i}\ell^{c}\ell_{k}+T_{jcd}^{i}\ell^{c}\ell_{k}\ell^{d}\ell_{h}-T_{jkh}^{a}\ell^{i}\ell_{a}+T_{jkd}^{a}\ell^{i}\ell_{a}\ell^{d}\ell_{h}+T_{jch}^{a}\ell^{i}\ell_{a}\ell^{c}\ell_{k}-T_{jcd}^{a}\ell^{i}\ell_{a}\ell^{c}\ell_{k}\ell^{d}\ell_{h}) \end{split}$$

Using (2.1a), (1.2a) and (1.2c) in above equation, we get

$$(4.3) \qquad \beta_{m}\beta_{l}(T_{jkh}^{i} - \frac{1}{F}T_{jk}^{i}\ell_{h} - \frac{1}{F}T_{jh}^{i}\ell_{k} - T_{jkh}^{a}\ell^{i}\ell_{a} + \frac{1}{F^{2}}T_{j}^{i}\ell_{k}\ell_{h} + \frac{1}{F}T_{jk}^{a}\ell^{i}\ell_{a}\ell_{h} + \frac{1}{F}T_{jh}^{a}\ell^{i}\ell_{a}\ell_{k} - \frac{1}{F^{2}}T_{j}^{a}\ell^{i}\ell_{a}\ell_{k}\ell_{h}) \\ = a_{lm}(T_{jkh}^{i} - \frac{1}{F}T_{jk}^{i}\ell_{h} - \frac{1}{F}T_{jh}^{i}\ell_{k} - T_{jkh}^{a}\ell^{i}\ell_{a} + \frac{1}{F^{2}}T_{j}^{i}\ell_{k}\ell_{h} + \frac{1}{F}T_{jk}^{a}\ell^{i}\ell_{a}\ell_{h} + \frac{1}{F}T_{jh}^{a}\ell^{i}\ell_{a}\ell_{k} - \frac{1}{F^{2}}T_{j}^{a}\ell^{i}\ell_{a}\ell_{k}\ell_{h}).$$

Now, since the torsion tensor T_{jk}^{i} and deviation tensor T_{j}^{i} are birecurrent, i.e. satisfy (3.2) and (3.3), respectively. In view of (3.2), (3.3), (1.2b) and (1.2c), then equation (4.3) can be written as

$$\left(T_{jkh}^{i}-T_{jkh}^{a}\ell^{i}\ell_{a}\right)=a_{lm}\left(T_{jkh}^{i}-T_{jkh}^{a}\ell^{i}\ell_{a}\right).$$

From last equation, we conclude

Corollary 4.1: In pseudo T – birecurrent space, the projection of the tensor T_{jkh}^{i} on indicatrix is birecurrent, if and only if $T_{ikh}^{a} \ell_{a}$ is birecurrent.

We know that, the torsion tensor T_{jk}^{i} is birecurrent, i.e. characterized by (3.2). In view of (1.3), the projection of the torsion tensor T_{ik}^{i} on indicatrix is given by

(4.4)
$$p \cdot T_{ik}^{i} = T_{bc}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c}$$
.

Taking covariant derivative of (4.4) with respect to x^{i} and x^{m} in sense of Berwald and using the fact that $\beta_{i}h_{j}^{i} = 0$, then using (3.2) in the resulting equation, we get

$$\beta_m \beta_l \left(p.T_{jk}^i \right) = a_{lm} T_{bc}^a h_a^i h_j^b h_k^c .$$
Using (4.4) in above equation, we get
(4.5)
$$\beta_m \beta_l \left(p.T_{ik}^i \right) = a_{lm} \left(p.T_{ik}^i \right).$$

This shows that $p.T_{ik}^{i}$ is birecurrent. Thus, we conclude

Theorem 4.2: The torsion tensor T_{ik}^{i} on indicatrix in pseudo T – birecurrent space is birecurrent in sense of Berwald.

Let the projection of torsion tensor T_{jk}^{i} on indicatrix is birecurrent, i.e. characterized by (4.5). Using (1.3) in (4.5), we get

$$\beta_m \beta_l \left(T_{bc}^a h_a^i h_j^b h_k^c \right) = a_{lm} T_{bc}^a h_a^i h_j^b h_k^c$$

$$\begin{split} \beta_{m}\beta_{l}(T_{jk}^{i}-T_{bk}^{a}\ell^{b}\ell_{j}-T_{jk}^{a}\ell^{i}\ell_{a}+T_{bk}^{a}\ell^{i}\ell_{a}\ell^{b}\ell_{j}-T_{jc}^{i}\ell^{c}\ell_{k}+T_{bc}^{i}\ell^{b}\ell_{j}\ell^{c}\ell_{k}+T_{jc}^{a}\ell^{i}\ell_{a}+T_{bk}^{a}\ell^{i}\ell_{a}\ell^{c}\ell_{k}-T_{bc}^{i}\ell^{i}\ell_{a}\ell^{b}\ell_{j}\ell^{c}\ell_{k}) \\ &=a_{lm}(T_{jk}^{i}-T_{bk}^{i}\ell^{b}\ell_{j}-T_{jk}^{a}\ell^{i}\ell_{a}+T_{bk}^{a}\ell^{i}\ell_{a}\ell^{b}\ell_{j}-T_{jc}^{i}\ell^{c}\ell_{k}+T_{bc}^{i}\ell^{b}\ell_{j}\ell^{c}\ell_{k}+T_{bc}^{a}\ell^{i}\ell_{a}+T_{bk}^{a}\ell^{i}\ell_{a}\ell^{c}\ell_{k}-T_{bc}^{i}\ell^{i}\ell_{a}\ell^{b}\ell_{j}\ell^{c}\ell_{k}). \end{split}$$

Using (2.1c), (1.2a) and (1.2c) in above equation, we get

$$(4.6) \qquad \beta_{m}\beta_{l}(T_{jk}^{i} - \frac{1}{F}T_{k}^{i}\ell_{j} - T_{jk}^{a}\ell^{i}\ell_{a} + \frac{1}{F}T_{k}^{a}\ell^{i}\ell_{a}\ell_{j} - \frac{1}{F}T_{j}^{i}\ell_{k} + \frac{1}{F}T_{c}^{a}\ell_{j}\ell^{c}\ell_{k} + \frac{1}{F}T_{j}^{a}\ell^{i}\ell_{a}\ell_{k} - \frac{1}{F}T_{c}^{a}\ell^{i}\ell_{a}\ell_{j}\ell^{c}\ell_{k}) a_{lm}(T_{jk}^{i} - T_{bk}^{i}\ell^{b}\ell_{j} - T_{jk}^{a}\ell^{i}\ell_{a} + T_{bk}^{a}\ell^{i}\ell_{a}\ell^{b}\ell_{j} - T_{jc}^{i}\ell^{c}\ell_{k} + T_{bc}^{i}\ell^{b}\ell_{j}\ell^{c}\ell_{k} + T_{jc}^{a}\ell^{i}\ell_{a} + T_{bk}^{a}\ell^{i}\ell_{a}\ell^{c}\ell_{k} - T_{bc}^{i}\ell^{i}\ell_{a}\ell^{b}\ell_{j}\ell^{c}\ell_{k})$$

Now, since the division tensor T_j^i is birecurrent, i.e. satisfies (3.3). In view of (3.3), (1.2b) and (1.2c), then equation (4.6) can be written as

$$\beta_m \beta_l \left(T^i_{jk} - T^a_{jk} \ell^i \ell_a \right) = a_{lm} \left(T^i_{jk} - T^a_{jk} \ell^i \ell_a \right).$$

From last equation, we conclude

Corollary 4.2: In pseudo T – birecurrent space, the projection of the torsion tensor T_{jk}^{i} on indicatrix is birecurrent, if and only if $T_{jk}^{a} \ell_{a}$ is birecurrent.

We know that, the deviation tensor T_j^i is birecurrent, i.e. characterized by (3.3). In view of (1.3), the projection of the deviation tensor T_j^i on indicatrix is given by

(4.7)
$$p \cdot T_j^i = T_b^a h_a^i h_j^b$$
.

Taking covariant derivative of (4.7) with respect to x^{l} and x^{m} in sense of Berwald and using the fact that $\beta_{l}h_{j}^{i} = 0$, then using (3.3) in the resulting equation, we get

$$\beta_m \beta_l \left(p.T_i^i \right) = a_{lm} T_b^a h_a^i h_i^b.$$

Using (4.7) in above equation, we get (4.8) $\beta_m \beta_l \left(p.T_j^i \right) = a_{lm} \left(p.T_j^i \right).$

This shows that $p.T_i^i$ is birecurrent. Thus, we conclude

Theorem 4.3: The deviation tensor T_i^i on indicatrix pseudo T – birecurrent space is birecurrent in sense of Berwald.

Let the projection of the division tensor T_i^i on indicatrix is birecurrent, i.e. characterized by (4.8). Using (1.3) in (4.8), we get

$$\beta_m \beta_l \left(T_b^a h_a^i h_j^b \right) = a_{lm} T_b^a h_a^i h_j^b.$$

Using (1.4) in above equation, we get

$$\beta_{m}\beta_{l}\left(T_{j}^{i}-T_{b}^{i}\ell^{b}\ell_{j}-T_{j}^{a}\ell^{i}\ell_{a}+T_{b}^{a}\ell^{i}\ell_{a}\ell^{b}\ell_{j}\right)=a_{lm}\left(T_{j}^{i}-T_{b}^{i}\ell^{b}\ell_{j}-T_{j}^{a}\ell^{i}\ell_{a}+T_{b}^{a}\ell^{i}\ell_{a}\ell^{b}\ell_{j}\right)$$

Now, in view of (1.2b), (1.2c) and if the division tensor $T_{b}^{i}y^{b} = 0$, then above equation becomes

 $\beta_{m}\beta_{l}\left(T_{j}^{i}-T_{j}^{a}\ell^{i}\ell_{a}\right)=a_{lm}\left(T_{j}^{i}-T_{j}^{a}\ell^{i}\ell_{a}\right).$

From last equation, we conclude

Corollary 4.3: In pseudo T – birecurrent space, the projection of the division tensor T_i^i on indicatrix is birecurrent, if and

only if $T_i^a \ell_a$ is birecurrent.

5. Conclusion

Some theorems belong to pseudo T – birecurrent space have been established and proved. Further, we discussed the projection on indicatrix for some tensors whose behave as birecurrent in sense of Berwald.

6. References

- 1. Abdallah AA, Navlekar AA, Ghadle KP, Hardan B. Fundamentals and recent studies of Finsler geometry, International Journal of Advances in Applied Mathematics and Mechanics. 2022; 10(2):27-38.
- 2. Dubey RS, Singh H. Proc. Indian acad. sci. 1979; 88A:p363.
- 3. Gheorghe M. The indicatrix in Finsler geometry, Analele Stiintifice Ale Uuiversitătii Matematică. Tomul LIII, 2007, 163-180.
- Pandey PN, Dwivedi VJ. Affine motion in a T recurrent Finsler manifold, IV, Proc. Nat. Acad. Sci., (India). 1987; 57 (A):438-446.
- 5. Pandey PN, Dwivedi VJ. On T recurrent Finsler spaces, Prog. of Maths (India). 1987; 21(2):101-111.
- 6. Pandey PN, Verma R. C^h birecurrent Finsler space, second conference of the International Academy of Physical Sciences, 1997, 13-14.
- 7. Qasem FY, Saleem AA. On certain types of affine motion, International Journal of Sciences Basic and Applied Research. 2016; 27(1):95-114.
- 8. Rund H. The differential geometry of Finsler spaces, Springer-verlag, Berlin Göttingen-Heidelberg, (1959); 2nd (in Russian), Nauka, Moscow, 1981.
- 9. Saleem AA. On certain problems in Finsler space, D. Ph. Thesis, Univ. of Aden, (Aden) (Yemen), 2016.
- 10. Saleem AA, Abdallah AA. Study on U^h birecurrent Finsler space, International Journal of Advanced Research in Science, Communication and Technology. 2022; 2(3):28-39.
- 11. Singh SP. Projective motion in bi-recurrent Finsler space, Differential Geometry- Dynamical Systems. 2010; 12:221-227.
- 12. Sinha BB. Progress of Mathematics, Allahabad. 1971; 5(88).