International Journal of Advanced Multidisciplinary Research and Studies

ISSN: 2583-049X

On Pseudo T-Birecurrent Finsler Space in Berwald Sense

${ }^{1}$ Abdalstar A Saleem, ${ }^{2}$ Alaa A Abdallah
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Aden University, Aden, Yemen
${ }^{2}$ Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India

Corresponding Author: Alaa A Abdallah

Abstract

In this present paper, we introduce a Finsler space which Pseudo curvature tensor satisfies the birecurrence property in sense of Berwald. Also, we prove that a flat pseudo T-birecurrent space for $H_{j k h}^{i}$ exist. Certain identities

belong to this space have been studied. Finally, the projection on indicatrix with respect to Berwald's connection for the tensors whose behave as birecurrent have been discussed.

Keywords: Pseudo T - Birecurrent Space, Flat Pseudo T - Birecurrent Space, Projection on Indicatrix

1. Introduction

The recurrence property has been studied by the Finslerian geometrics. Sinha ${ }^{[12]}$ introduced the torsion tensor $T_{j k}^{i}$ and curvature tensor $T_{j k h}^{i}$ from the deviation tensor T_{j}^{i}. Dabey and Singh ${ }^{[2]}$ and Pandey and Dwivedi ${ }^{[4,5]}$ considered the space equipped curvature tensor $T_{j k h}^{i}$ is recurrent and called it T - recurrent Finsler space. They also considered there in projectively flat $-T$ - recurrent space and obtained certain results belong to these spaces. Saleem ${ }^{[9]}$ studied the flat of recurrent curvature tensor fields in Finsler space. Further, Qasem and Saleem ${ }^{[7]}$, Pandey and Verma ${ }^{[6]}$, Saleem and Abdallah ${ }^{[10]}$, Singh ${ }^{[11]}$ and Sinha ${ }^{[12]}$ were studied on birecurrent curvature tensor fields in Finsler space. Saleem and Abdallah ${ }^{[10]}$ study the projection on indicatrix for some tensors whose satisfy the birecurrence property.
Let us consider an n-dimensional Finsler space F_{n} equipped with the line elements (x, y) and the fundamental metric function F is positively homogeneous of degree one in y^{i}. Berwald covariant derivative $\beta_{k} T_{j}^{i}$ of an arbitrary tensor field T_{j}^{i} with respect to x^{k} is given by ${ }^{[1,8]}$

$$
\beta_{k} T_{j}^{i}=\partial_{k} T_{j}^{i}-\left(\dot{\partial}_{r} T_{j}^{i}\right) G_{k}^{r}+T_{j}^{r} G_{r k}^{i}-T_{r}^{i} G_{j k}^{r} .
$$

The processes of Berwald covariant differentiation with respect to x^{h} and the partial differentiation with respect to y^{k} commute according to

$$
\begin{equation*}
\text { a) } \dot{\partial}_{j} \beta_{l} T_{h}^{i}-\beta_{l} \dot{\partial}_{j} T_{h}^{i}=T_{h}^{r} G_{k l r}^{i}-T_{r}^{i} G_{k l h}^{r} \text {, } \tag{1.1}
\end{equation*}
$$

where the tensor $G_{j k h}^{i}$ is symmetric in their lower indices and defined by
b) $G_{j k h}^{i} y^{j}=0$.

Berwald's covariant derivative of the vectors y^{j} and l^{j} vanish identically, i. e.
a) $\beta_{l} y^{j}=0$
and
b) $\beta_{l} l^{j}=0$,
where
c) $l^{j}=\frac{y^{j}}{F}$.

Definition 1.1: The projection of any tensor T_{j}^{i} on indicatrix is given by ${ }^{[3,10]}$

$$
\begin{equation*}
p . T_{j}^{i}=T_{\beta}^{\alpha} h_{\alpha}^{i} h_{j}^{\beta} \tag{1.3}
\end{equation*}
$$

Where the angular metric tensor is homogeneous function of degree zero in y^{i} and defined by

$$
\begin{equation*}
h_{j}^{i}=\delta_{j}^{i}-l^{i} l_{j} \tag{1.4}
\end{equation*}
$$

Definition 1.2: If the projection of a tensor T_{j}^{i} on indicatrix I_{n-1} is the same tensor T_{j}^{i}, then the tensor is called an indicatrix tensor or an indicatory tensor.

2. Preliminaries

In this section, we introduce some important concepts and definitions. The pseudo deviation tensor T_{j}^{i} is positively homogeneous of degree 2 in y^{i} and defined by ${ }^{[12]}$

$$
T_{j}^{i}=-\left\{H \delta_{j}^{i}+\frac{1}{n+1}\left(\dot{\partial}_{r} H_{j}^{r}-\dot{\partial}_{j} H\right) y^{i}\right\} .
$$

The pseudo torsion tensor $T_{j k}^{i}$ is positively homogeneous of degree 1 in y^{i} and defined by

$$
T_{j k}^{i}=\frac{1}{n+1}\left\{y^{i} H_{r k j}^{r}+2 \delta_{[j}^{i}\left(H_{k]}+\dot{\partial}_{[k} H\right)\right\} .
$$

The pseudo curvature tensor $T_{j k h}^{i}$ is positively homogeneous of degree 0 in y^{i} and defined by

$$
T_{j k h}^{i}=\frac{1}{n+1}\left\{\delta_{[j}^{i} H_{r k h}^{r}+y^{i} \dot{\partial}_{j} H_{r k h}^{r}+2 \delta_{[k}^{i}\left(H_{(j) h}+\dot{\partial}_{h]} \dot{\partial}_{j} H\right)\right\}
$$

These tensors satisfy the following ${ }^{[12]}$
a) $T_{j k h}^{i} y^{j}=T_{k h}^{i}$,
b) $T_{j k h}^{i}=\dot{\partial}_{j} T_{k h}^{i}$
c) $T_{k h}^{i} y^{k}=T_{h}^{i} \quad$ and
d) $T_{j k h}^{i}=W_{j k h}^{i}-H_{j k h}^{i}$,
where the curvature tensor $H_{j k h}^{i}$, torsion tensor $H_{j k}^{i}$ and deviation tensor H_{j}^{i} are positively homogeneous of degree zero, one and two in y^{i}, respectively. And satisfy the following
a) $H_{j k h}^{i} y^{j}=H_{k h}^{i}$,
b) $H_{k h}^{i} y^{k}=H_{h}^{i}$,
c) $H_{j k i}^{i}=H_{j k}$,
d) $H_{j k i}^{i}=H_{j k}$, e) $H_{k} y^{k}=(n-1) H$ and f) $\dot{\partial}_{j} H_{k}=H_{j k}$.

The Bianchi identity for the curvature tensor $H_{j k h}^{i}$ is given by

$$
\begin{equation*}
\text { g) } H_{j k h}^{i}+H_{k h j}^{i}+H_{h j k}^{i}=0 \tag{2.2}
\end{equation*}
$$

The projective curvature tensor $W_{j k h}^{i}$, torsion tensor $W_{j k}^{i}$ and deviation tensor W_{j}^{i} are positively homogeneous of degree zero, one and two in y^{i}, respectively. And satisfy the following ${ }^{[8]}$
a) $W_{j k h}^{i} y^{j}=W_{k h}^{i}$,
b) $W_{k h}^{i} y^{k}=W_{h}^{i}$
and
c) $W_{j k i}^{i}=0$.

The Bianchi identity for the projective curvature tensor $W_{j k h}^{i}$ is given by ${ }^{[11]}$
d) $W_{j k h}^{i}+W_{k h j}^{i}+W_{h j k}^{i}=0$.

A Finsler space called a pseudo T - recurrent space if the curvature tenser $T_{j k h}^{i}$ satisfies ${ }^{[4,5]}$

$$
\begin{equation*}
\beta_{l} T_{j k h}^{i}=\lambda_{l} T_{j k h}^{i}, T_{j k h}^{i} \neq 0 \tag{2.4}
\end{equation*}
$$

where λ_{l} is non-zero covariant vector field. Since the Finsler space is projective flat, then we have ${ }^{[8]}$
a) $W_{j k h}^{i}=0$,
b) $W_{k h}^{i}=0$
and
c) $W_{j}^{i}=0$.

3. Pseudo T-birecurrent space

In this section, we introduce a Finsler space which the curvature tensor $T_{j k h}^{i}$ is birecurrent in sense of Berwald. Also, we obtained flat pseudo T-birecurrent space.
Definition 3.1: A Finsler space F_{n} which the curvature tensor $T_{j k h}^{i}$ satisfies the condition

$$
\begin{equation*}
\beta_{m} \beta_{l} T_{j k h}^{i}=a_{l m} T_{j k h}^{i}, T_{j k h}^{i} \neq 0, \tag{3.1}
\end{equation*}
$$

where $a_{l m}$ recurrence covariant tensor field of second order, this space called a pseudo T - birecurrent space. Differentiating (2.4) covariantly with respect to x^{m} in sense of Berwald, we get

$$
\beta_{m} \beta_{l} T_{j k h}^{i}=\left(\beta_{m} \lambda_{l}\right) T_{j k h}^{i}+\lambda_{l} \beta_{m} T_{j k h}^{i}
$$

In view of (2.4), the above equation becomes

$$
\beta_{m} \beta_{l} T_{j k h}^{i}=\left(\beta_{m} \lambda_{l}\right) T_{j k h}^{i}+\lambda_{l} \lambda_{m} T_{j k h}^{i}
$$

Above equation can be written as the condition (3.1) where $a_{l m}=\left(\beta_{m} \lambda_{l}\right)+\lambda_{l} \lambda_{m}$. Thus, we conclude
Theorem 3.1: Every pseudo T - recurrent space which the recurrence vector field satisfies $\left(\beta_{m} \lambda_{l}\right)+\lambda_{l} \lambda_{m} \neq 0$ is a pseudo T - birecurrent space.

Transvecting the condition (3.1) by y^{j}, using (2.1a) and (1.2a), we get
(3.2) $\quad \beta_{m} \beta_{l} T_{k h}^{i}=a_{l m} T_{k h}^{i}$.

Transvecting (3.2) by y^{k}, using (2.1c) and (1.2a), we get
(3.3) $\quad \beta_{m} \beta_{l} T_{h}^{i}=a_{l m} T_{h}^{i}$.

Thus, we conclude
Theorem 3.2: In pseudo T-birecurrent space, the torsion tensor $T_{k h}^{i}$, deviation tensor T_{h}^{i} are birecurrent.

Let us consider a Finsler space whose the curvature tensor $T_{j k h}^{i}$ is a projective flat, i.e. satisfies (2.5). Differentiating (2.1d) covariantly with respect to x^{l} and x^{m} in sense of Berwald, using (2.5a) and the condition (3.1), we get
(3.4) $\quad \beta_{m} \beta_{l} H_{j k h}^{i}=a_{l m} H_{j k h}^{i}$.

Transvecting (3.4) by y^{j}, using (2.2a) and (1.2a), we get

$$
\begin{equation*}
\beta_{m} \beta_{l} H_{k h}^{i}=a_{l m} H_{k h}^{i} . \tag{3.5}
\end{equation*}
$$

Transvecting (3.5) by y^{k}, using (2.2b) and (1.2a), we get
(3.6) $\beta_{m} \beta_{l} H_{h}^{i}=a_{l m} H_{h}^{i}$.

Contracting the indices i and h in (3.4) and using (2.2c), we get
(3.7) $\quad \beta_{m} \beta_{l} H_{k h}=a_{l m} H_{k h}$.

Transvecting (3.7) by y^{k}, using (2.2d) and (1.2a), we get
(3.8)

$$
\beta_{m} \beta_{l} H_{h}=a_{l m} H_{h}
$$

Transvecting (3.8) by y^{h}, using (2.2e) and (1.2a), we get

$$
\begin{equation*}
\beta_{m} \beta_{l} H=a_{l m} H \tag{3.9}
\end{equation*}
$$

From (3.4), (3.5), (3.6), (3.7), (3.8) and (3.9), we conclude that $H_{j k h}^{i}, H_{k h}^{i}, H_{h}^{i}, H_{k h}, H_{h}$ and H satisfy the birecurrence property. Since the Finsler space is flat pseudo, i.e. (2.5a) satisfies in (2.1d). Thus, we conclude
Theorem 3.3: In flat pseudo T-birecurrent space, the curvature tensor $H_{j k h}^{i}$, torsion tensor $H_{k h}^{i}$, deviation tensor H_{h}^{i}, Ricci tensor $H_{k h}$, curvature vector H_{h} and curvature secular H are birecurrent.

Let us consider pseudo T-birecurrent space, i.e., characterized by the condition (3.1). Differentiating (3.8) partially with respect to y^{k}, we get

$$
\dot{\partial}_{k} \beta_{m} \beta_{l} H_{h}=\left(\dot{\partial}_{k} a_{l m}\right) H_{h}+a_{l m}\left(\dot{\partial}_{k} H_{h}\right) .
$$

Using commutation formula exhibited by (1.1a) for $\beta_{l} H_{h}$ in above equation and using (2.2f), we get

$$
\beta_{m} \dot{\partial}_{k} \beta_{l} H_{h}-\beta_{r} H_{h} G_{k l m}^{r}-\beta_{l} H_{r} G_{k h m}^{r}=\left(\dot{\partial}_{k} a_{l m}\right) H_{h}+a_{l m} H_{k h}
$$

Again, applying commutation formula exhibited by (1.1a) for H_{h} in above equation and using (3.7), we get

$$
-\left(\beta_{m} H_{r}\right) G_{k h l}^{r}-H_{r}\left(\beta_{m} G_{k h l}^{r}\right)-\left(\beta_{r} H_{h}\right) G_{k m l}^{r}-H_{h}\left(\beta_{r} G_{k m l}^{r}\right)-\beta_{r} H_{h} G_{k l m}^{r}-\beta_{l} H_{r} G_{k h m}^{r}=\left(\dot{\partial}_{k} a_{l m}\right) H_{h}
$$

Transvecting above equation by y^{l}, using (1.2a) and (1.1b), we get

$$
-y^{l} \beta_{l} H_{r} G_{k h m}^{r}=y^{l}\left(\dot{\partial}_{k} a_{l m}\right) H_{h}
$$

Transvecting above equation by y^{h}, using (1.2a), (1.1b) and (2.2e), we get

$$
y^{l}\left(\dot{\partial}_{k} a_{l m}\right)=0
$$

where $H \neq 0$, which can be written

$$
\begin{aligned}
& a_{k m}=\dot{\partial}_{k}\left(a_{l m} y^{l}\right) \\
& a_{k m}=\dot{\partial}_{k}\left[\dot{\partial}_{m}\left(a_{l s} y^{s}\right) y^{l}\right] \\
& a_{k m}=\dot{\partial}_{k}\left[\dot{\partial}_{m}\left(a_{l s} y^{s} y^{l}\right)-a_{m s} y^{s}\right] \\
& a_{k m}=\dot{\partial}_{k} \dot{\partial}_{m}\left(a_{l s} y^{s} y^{l}\right)-\left(\dot{\partial}_{k} a_{s m}\right) y^{s}-a_{m k}
\end{aligned}
$$

Which may be rewritten as
(3.10) $a_{k m}+a_{m k}=\dot{\partial}_{k} \dot{\partial}_{m} \varnothing$,
where $\varnothing=a_{l s} y^{s} y^{l}$.
Thus, we conclude
Theorem 3.4: In pseudo T-birecurrent space, from (3.10), the symmetric part if the recurrence tensor is birecurrent derivative of the scaler field.

Differentiating (3.2) partially with respect to y^{j}, we get

$$
\dot{\partial}_{j} \beta_{m} \beta_{l} T_{k h}^{i}=\left(\dot{\partial}_{j} a_{l m}\right) T_{k h}^{i}+a_{l m}\left(\dot{\partial}_{j} T_{k h}^{i}\right) .
$$

Using commutation formula exhibited by (1.1a) for $\beta_{l} T_{k h}^{i}$ in above equation and using (2.1b), we get

$$
\beta_{m} \dot{\partial}_{j} \beta_{l} T_{k h}^{i}-\beta_{r} T_{k h}^{i} G_{j m l}^{r}+\beta_{l} T_{k h}^{r} G_{j m r}^{i}-\beta_{l} T_{r h}^{i} G_{j m k}^{r}-\beta_{l} T_{k r}^{i} G_{j m h}^{r}=\left(\dot{\partial} a_{l m}\right) T_{k h}^{i}+a_{l m} T_{j k h}^{i} .
$$

Again, applying commutation formula exhibited by (1.1a) for $T_{k h}^{i}$ in above equation and using (2.1b) and (3.1), we get

$$
\begin{aligned}
\left(\beta_{m} T_{k h}^{s}\right) G_{j l s}^{i}+T_{k h}^{s}\left(\beta_{m} G_{j l s}^{i}\right)- & \left(\beta_{m} T_{s h}^{i}\right) G_{j l k}^{s}-T_{s h}^{i}\left(\beta_{m} G_{j l k}^{s}\right)-\left(\beta_{m} T_{k s}^{i}\right) G_{j l h}^{s}-T_{k s}^{i}\left(\beta_{m} G_{j l h}^{s}\right)-\beta_{r} T_{k h}^{i} G_{j m l}^{r} \\
& +\beta_{l} T_{k h}^{r} G_{j m r}^{i}-\beta_{l} T_{r h}^{i} G_{j m k}^{r}-\beta_{l} T_{k r}^{i} G_{j m h}^{r}=\left(\dot{\partial}_{j} a_{l m}\right) T_{k h}^{i} .
\end{aligned}
$$

Transvecting above equation by y^{l}, using (1.1b) and (1.2a), we get

$$
y^{l}\left(\beta_{l} T_{k h}^{r}\right) G_{j m r}^{i}-y^{l}\left(\beta_{l} T_{r h}^{i}\right) G_{j m k}^{r}-y^{l}\left(\beta_{l} T_{k r}^{i}\right) G_{j m h}^{r}=\left(\dot{\partial}_{j} a_{l m}\right) y^{l} T_{k h}^{i} .
$$

Taking skew-symmetric part of above equation with respect to the indices l and m, using (1.1b) and (1.2a), we get (3.11) $y^{l}\left(\beta_{l} T_{k h}^{r}\right) G_{j m r}^{i}+y^{l}\left(\beta_{l} T_{r h}^{i}\right) G_{j m k}^{r}+y^{l}\left(\beta_{l} T_{k r}^{i}\right) G_{j m h}^{r}=0$.

Thus, we conclude
Theorem 3.5: In pseudo T - birecurrent space, the skew-symmetric part of the recurrence tensor is the identity (3.11) holds.

4. Projection on Indicatrix with Respect to Berwald's Connection

In this section, we studied the projection on indicatrix for the tensors which be birecurrent. Let us consider a Finsler space F_{n} for the curvature tensor $T_{j k h}^{i}$ is birecurrent in sense of Berwald, i.e. characterized by (3.1). Now, in view of (1.3), the curvature tensor $T_{j k h}^{i}$ on indicatrix is given by
(4.1) $p . T_{j k h}^{i}=T_{b c d}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} h_{h}^{d}$.

Taking covariant derivative of (4.1) with respect to x^{l} and x^{m} in sense of Berwald and using the fact that $\beta_{l} h_{j}^{i}=0$, then using the condition (3.1) in the resulting equation, we get

$$
\beta_{m} \beta_{l}\left(p T_{j k h}^{i}\right)=a_{l m} T_{b c d}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} h_{h}^{d}
$$

Using (4.1) in above equation, we get
(4.2) $\quad \beta_{m} \beta_{l}\left(p . T_{j k h}^{i}\right)=a_{l m}\left(p . T_{j k h}^{i}\right)$.

This shows that $p . T_{j k h}^{i}$ is birecurrent. Thus, we conclude

Theorem 4.1: The curvature tensor $T_{j k h}^{i}$ on indicatrix in pseudo T-birecurrent space is birecurrent in sense of Berwald.

Let the projection of curvature tensor $T_{j k h}^{i}$ on indicatrix is birecurrent, i.e. characterized by (4.2). Using (1.3) in (4.2), we get

$$
\beta_{m} \beta_{l}\left(T_{b c d}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} h_{h}^{d}\right)=a_{l m} T_{b c d}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} h_{h}^{d} .
$$

Using (1.4) in above equation, we get

$$
\begin{aligned}
& \beta_{m} \beta_{l}\left(T_{j k h}^{i}-T_{j k d}^{i} \ell^{d} \ell_{h}-T_{j c h}^{i} \ell^{c} \ell_{k}+T_{j c d}^{i} \ell^{c} \ell_{k} \ell^{d} \ell_{h}-T_{j k h}^{a} \ell^{i} \ell_{a}+T_{j k d}^{a} \ell^{i} \ell_{a} \ell^{d} \ell_{h}+T_{j c h}^{a} \ell^{i} \ell_{a} \ell^{c} \ell_{k}-T_{j c d}^{a} \ell^{i} \ell_{a} \ell^{c} \ell_{k} \ell^{d} \ell_{h}\right) \\
& =a_{l m}\left(T_{j k h}^{i}-T_{j k d}^{i} \ell^{d} \ell_{h}-T_{j c h}^{i} \ell^{c} \ell_{k}+T_{j c d}^{i} \ell^{c} \ell_{k} \ell^{d} \ell_{h}-T_{j k h}^{a} \ell^{i} \ell_{a}+T_{j k d}^{a} \ell^{i} \ell_{a} \ell^{d} \ell_{h}+T_{j c h}^{a} \ell^{i} \ell_{a} \ell^{c} \ell_{k}-T_{j c d}^{a} \ell^{i} \ell_{a} \ell^{c} \ell_{k} \ell^{d} \ell_{h}\right) .
\end{aligned}
$$

Using (2.1a), (1.2a) and (1.2c) in above equation, we get

$$
\begin{align*}
& \beta_{m} \beta_{l}\left(T_{j k h}^{i}-\frac{1}{F} T_{j k}^{i} \ell_{h}-\frac{1}{F} T_{j h}^{i} \ell_{k}-T_{j k h}^{a} \ell^{i} \ell_{a}+\frac{1}{F^{2}} T_{j}^{i} \ell_{k} \ell_{h}+\frac{1}{F} T_{j k}^{a} \ell^{i} \ell_{a} \ell_{h}+\frac{1}{F} T_{j h}^{a} \ell^{i} \ell_{a} \ell_{k}-\frac{1}{F^{2}} T_{j}^{a} \ell^{i} \ell_{a} \ell_{k} \ell_{h}\right) \tag{4.3}\\
& =a_{l m}\left(T_{j k h}^{i}-\frac{1}{F} T_{j k}^{i} \ell_{h}-\frac{1}{F} T_{j h}^{i} \ell_{k}-T_{j k h}^{a} \ell^{i} \ell_{a}+\frac{1}{F^{2}} T_{j}^{i} \ell_{k} \ell_{h}+\frac{1}{F} T_{j k}^{a} \ell^{i} \ell_{a} \ell_{h}+\frac{1}{F} T_{j h}^{a} \ell^{i} \ell_{a} \ell_{k}-\frac{1}{F^{2}} T_{j}^{a} \ell^{i} \ell_{a} \ell_{k} \ell_{h}\right) .
\end{align*}
$$

Now, since the torsion tensor $T_{j k}^{i}$ and deviation tensor T_{j}^{i} are birecurrent, i.e. satisfy (3.2) and (3.3), respectively. In view of (3.2), (3.3), (1.2b) and (1.2c), then equation (4.3) can be written as

$$
\left(T_{j k h}^{i}-T_{j k h}^{a} \ell^{i} \ell_{a}\right)=a_{l m}\left(T_{j k h}^{i}-T_{j k h}^{a} \ell^{i} \ell_{a}\right)
$$

From last equation, we conclude
Corollary 4.1: In pseudo T-birecurrent space, the projection of the tensor $T_{j k h}^{i}$ on indicatrix is birecurrent, if and only if $T_{j k h}^{a} \ell_{a}$ is birecurrent.

We know that, the torsion tensor $T_{j k}^{i}$ is birecurrent, i.e. characterized by (3.2). In view of (1.3), the projection of the torsion tensor $T_{j k}^{i}$ on indicatrix is given by

$$
\begin{equation*}
p . T_{j k}^{i}=T_{b c}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} . \tag{4.4}
\end{equation*}
$$

Taking covariant derivative of (4.4) with respect to x^{l} and x^{m} in sense of Berwald and using the fact that $\beta_{l} h_{j}^{i}=0$, then using (3.2) in the resulting equation, we get

$$
\beta_{m} \beta_{l}\left(p . T_{j k}^{i}\right)=a_{l m} T_{b c}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} .
$$

Using (4.4) in above equation, we get

$$
\begin{equation*}
\beta_{m} \beta_{l}\left(p \cdot T_{j k}^{i}\right)=a_{l m}\left(p \cdot T_{j k}^{i}\right) . \tag{4.5}
\end{equation*}
$$

This shows that $p . T_{j k}^{i}$ is birecurrent. Thus, we conclude
Theorem 4.2: The torsion tensor $T_{j k}^{i}$ on indicatrix in pseudo T-birecurrent space is birecurrent in sense of Berwald.

Let the projection of torsion tensor $T_{j k}^{i}$ on indicatrix is birecurrent, i.e. characterized by (4.5). Using (1.3) in (4.5), we get

$$
\beta_{m} \beta_{l}\left(T_{b c}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c}\right)=a_{l m} T_{b c}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c}
$$

Using (1.4) in above equation, we get

$$
\begin{aligned}
& \beta_{m} \beta_{l}\left(T_{j k}^{i}-T_{b k}^{i} \ell^{b} \ell_{j}-T_{j k}^{a} \ell^{i} \ell_{a}+T_{b k}^{a} \ell^{i} \ell_{a} \ell^{b} \ell_{j}-T_{j c}^{i} \ell^{c} \ell_{k}+T_{b c}^{i} \ell^{b} \ell_{j} \ell^{c} \ell_{k}+T_{j c}^{a} \ell^{i} \ell_{a}+T_{b k}^{a} \ell^{i} \ell_{a} \ell^{c} \ell_{k}-T_{b c}^{i} \ell^{i} \ell_{a} \ell^{b} \ell_{j} \ell^{c} \ell_{k}\right) \\
& =a_{l m}\left(T_{j k}^{i}-T_{b k}^{i} \ell^{b} \ell_{j}-T_{j k}^{a} \ell^{i} \ell_{a}+T_{b k}^{a} \ell^{i} \ell_{a} \ell^{b} \ell_{j}-T_{j c}^{i} \ell^{c} \ell_{k}+T_{b c}^{i} \ell^{b} \ell_{j} \ell^{c} \ell_{k}+T_{j c}^{a} \ell^{i} \ell_{a}+T_{b k}^{a} \ell^{i} \ell_{a} \ell^{c} \ell_{k}-T_{b c}^{i} \ell^{i} \ell_{a} \ell^{b} \ell_{j} \ell^{c} \ell_{k}\right) .
\end{aligned}
$$

Using (2.1c), (1.2a) and (1.2c) in above equation, we get

$$
\begin{align*}
& \beta_{m} \beta_{l}\left(T_{j k}^{i}-\frac{1}{F} T_{k}^{i} \ell_{j}-T_{j k}^{a} \ell^{i} \ell_{a}+\frac{1}{F} T_{k}^{a} \ell^{i} \ell_{a} \ell_{j}-\frac{1}{F} T_{j}^{i} \ell_{k}+\frac{1}{F} T_{c}^{a} \ell_{j} \ell^{c} \ell_{k}+\frac{1}{F} T_{j}^{a} \ell^{i} \ell_{a} \ell_{k}-\frac{1}{F} T_{c}^{a} \ell^{i} \ell_{a} \ell_{j} \ell^{c} \ell_{k}\right) \tag{4.6}\\
& a_{l m}\left(T_{j k}^{i}-T_{b k}^{i} \ell^{b} \ell_{j}-T_{j k}^{a} \ell^{i} \ell_{a}+T_{b k}^{a} \ell^{i} \ell_{a} \ell^{b} \ell_{j}-T_{j c}^{i} \ell^{c} \ell_{k}+T_{b c}^{i} \ell^{b} \ell_{j} \ell^{c} \ell_{k}+T_{j c}^{a} \ell^{i} \ell_{a}+T_{b k}^{a} \ell^{i} \ell_{a} \ell^{c} \ell_{k}-T_{b c}^{i} \ell^{i} \ell_{a} \ell^{b} \ell_{j} \ell^{c} \ell_{k}\right)
\end{align*}
$$

Now, since the division tensor T_{j}^{i} is birecurrent, i.e. satisfies (3.3). In view of (3.3), (1.2b) and (1.2c), then equation (4.6) can be written as

$$
\beta_{m} \beta_{l}\left(T_{j k}^{i}-T_{j k}^{a} \ell^{i} \ell_{a}\right)=a_{l m}\left(T_{j k}^{i}-T_{j k}^{a} \ell^{i} \ell_{a}\right) .
$$

From last equation, we conclude

Corollary 4.2: In pseudo T-birecurrent space, the projection of the torsion tensor $T_{j k}^{i}$ on indicatrix is birecurrent, if and only if $T_{j k}^{a} \ell_{a}$ is birecurrent.

We know that, the deviation tensor T_{j}^{i} is birecurrent, i.e. characterized by (3.3). In view of (1.3), the projection of the deviation tensor T_{j}^{i} on indicatrix is given by
(4.7) $\quad p . T_{j}^{i}=T_{b}^{a} h_{a}^{i} h_{j}^{b}$.

Taking covariant derivative of (4.7) with respect to x^{l} and x^{m} in sense of Berwald and using the fact that $\beta_{l} h_{j}^{i}=0$, then using (3.3) in the resulting equation, we get

$$
\beta_{m} \beta_{l}\left(p \cdot T_{j}^{i}\right)=a_{l m} T_{b}^{a} h_{a}^{i} h_{j}^{b}
$$

Using (4.7) in above equation, we get

$$
\begin{equation*}
\beta_{m} \beta_{l}\left(p \cdot T_{j}^{i}\right)=a_{l m}\left(p \cdot T_{j}^{i}\right) \tag{4.8}
\end{equation*}
$$

This shows that $p . T_{j}^{i}$ is birecurrent. Thus, we conclude
Theorem 4.3: The deviation tensor T_{j}^{i} on indicatrix pseudo T-birecurrent space is birecurrent in sense of Berwald.

Let the projection of the division tensor T_{j}^{i} on indicatrix is birecurrent, i.e. characterized by (4.8). Using (1.3) in (4.8), we get

$$
\beta_{m} \beta_{l}\left(T_{b}^{a} h_{a}^{i} h_{j}^{b}\right)=a_{l m} T_{b}^{a} h_{a}^{i} h_{j}^{b} .
$$

Using (1.4) in above equation, we get

$$
\beta_{m} \beta_{l}\left(T_{j}^{i}-T_{b}^{i} \ell^{b} \ell_{j}-T_{j}^{a} \ell^{i} \ell_{a}+T_{b}^{a} \ell^{i} \ell_{a} \ell^{b} \ell_{j}\right)=a_{l m}\left(T_{j}^{i}-T_{b}^{i} \ell^{b} \ell_{j}-T_{j}^{a} \ell^{i} \ell_{a}+T_{b}^{a} \ell^{i} \ell_{a} \ell^{b} \ell_{j}\right)
$$

Now, in view of (1.2b), (1.2c) and if the division tensor $T_{b}^{i} y^{b}=0$, then above equation becomes

$$
\beta_{m} \beta_{l}\left(T_{j}^{i}-T_{j}^{a} \ell^{i} \ell_{a}\right)=a_{l m}\left(T_{j}^{i}-T_{j}^{a} \ell^{i} \ell_{a}\right) .
$$

From last equation, we conclude
Corollary 4.3: In pseudo T-birecurrent space, the projection of the division tensor T_{j}^{i} on indicatrix is birecurrent, if and only if $T_{j}^{a} \ell_{a}$ is birecurrent.

5. Conclusion

Some theorems belong to pseudo T - birecurrent space have been established and proved. Further, we discussed the projection on indicatrix for some tensors whose behave as birecurrent in sense of Berwald.

6. References

1. Abdallah AA, Navlekar AA, Ghadle KP, Hardan B. Fundamentals and recent studies of Finsler geometry, International Journal of Advances in Applied Mathematics and Mechanics. 2022; 10(2):27-38.
2. Dubey RS, Singh H. Proc. Indian acad. sci. 1979; 88A:p363.
3. Gheorghe M. The indicatrix in Finsler geometry, Analele Stiintifice Ale Uuiversitătii Matematică. Tomul LIII, 2007, 163180.
4. Pandey PN, Dwivedi VJ. Affine motion in a T - recurrent Finsler manifold, IV, Proc. Nat. Acad. Sci., (India). 1987; 57 (A):438-446.
5. Pandey PN, Dwivedi VJ. On T - recurrent Finsler spaces, Prog. of Maths (India). 1987; 21(2):101-111.
6. Pandey PN, Verma R. C^{h}-birecurrent Finsler space, second conference of the International Academy of Physical Sciences, 1997, 13-14.
7. Qasem FY, Saleem AA. On certain types of affine motion, International Journal of Sciences Basic and Applied Research. 2016; 27(1):95-114.
8. Rund H. The differential geometry of Finsler spaces, Springer-verlag, Berlin Göttingen-Heidelberg, (1959); 2 ${ }^{\text {nd }}$ (in Russian), Nauka, Moscow, 1981.
9. Saleem AA. On certain problems in Finsler space, D. Ph. Thesis, Univ. of Aden, (Aden) (Yemen), 2016.
10. Saleem AA, Abdallah AA. Study on U^{h} - birecurrent Finsler space, International Journal of Advanced Research in Science, Communication and Technology. 2022; 2(3):28-39.
11. Singh SP. Projective motion in bi-recurrent Finsler space, Differential Geometry- Dyhamical Systems. 2010; 12:221-227.
12. Sinha BB. Progress of Mathematics, Allahabad. 1971; 5(88).
