

463

Int. j. adv. multidisc. res. stud. 2023; 3(3):463-467

Algorithms Searching for Solutions in Fighting Games

1 Nguyễn Thu Hương, 2 Nguyễn Phương Vân

 1, 2 Thai Nguyen University of Technology, Thai Nguyen University Thai Nguyen, Vietnam

Corresponding Author: Nguyễn Thu Hương

Abstract

In this Paper, we introduce Algorithms searching for

solutions in fighting games, a common layer of problems in

the field of Artificial Intelligence (AI). There are many

types of fighting games. The complexity of algorithms in

terms of memorial space and computational time is often

very large. Each particular game has its own rules of

movements, starting states and ending states. In order to

describe this problem, 5 components including starting state,

intermediate state, ending state, transition, and search tree

are used. Finding a new move advantageously is a search

tree basing on the evaluating function. From the general

algorithm, in order to reduce the complexity, the paper also

introduces the α-β cut method. According to this method,

some branches in the search tree can be ignored. When

applying the limited search depth level and the α-β cut

method, the algorithm produces a faster searching result and

allows the player to have multiple choices about the

difficulty level of the games.

Keywords: Artificial Intelligence, Minimax, α-β Cut

1. Introduction

Artificial intelligence or artificial intelligence (AI) is an intelligence programmed by humans with the goal of enabling

computers to automate intelligent behaviors like humans [1, 2]. The difference between artificial intelligence and logical

programming in programming languages is the application of machine learning systems simulating human intelligence in

processes that humans do better than computers [3].

Artificial intelligence has been known as a keyword of the 4th industrial revolution. The world is entering a new era with rapid

development of thanks to AI. AI is the realization of human abilities such as seeing, hearing, decision-making, movement and

learning entered into computers. In other words, AI is a combination of algorithms, big data, and computing power. These are

the three main components that allow us to build the complete artificial intelligence [4-6].

Artificial intelligence has become a bridge for many fields from digital, physical to biotechnology. Devices and machines

using AI can be present everywhere in life [7-10]. Amazon, for example, distributes billions of products using advanced

automation technology, machine learning and robotics, maximizing efficiency, minimizing human resources [12, 13].

In the core of this paper, the algorithm searching for the solution in the game with 2 opponents (such as chess, Chinese chess,

checkers, etc.) is proposed [11]. The first player is called White, his opponent is called Black. The aim of the algorithm is to

search for White to get the best benefit for itself and pass the difficulty to the Black (the algorithm is set up on the side of

White). The algorithm will stop when neither White win the game or Black cannot move to the next step.

2. Search Space

We will consider two-player games with the following characteristics. Two players take turns making moves that follow

certain rules, the rules are the same for both players. Typically, in chess, two players can apply the rules of pawn, castle, to

make a move. Rule of white pawn, white castle, etc. as well as the rule of Black pawn, Black castle, etc. Another feature is that

both players are fully informed about the situation in the game (unlike in card games, the player cannot know what cards the

other players have left). The chess problem can be thought of as a problem of finding a move, where at each turn, the player

must choose amongst many possible options (obeys the rule), the best option which could lead him to win in the player’s turn

of games. However, the search problem here will be complicated because of opponents, the player does not know the

movements of his opponent in the next steps. We will state more precisely this search problem in the following:

▪ The chess problem can be considered as the search problem in a state space. Each state is a situation (the arrangement of

the chess pieces of the two sides on the chessboard).

▪ The starting state is the arrangement of the chess pieces of the two sides at the beginning of the game.

▪ Operators are valid moves.

Received: 10-04-2023

Accepted: 20-05-2023

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

464

▪ Ending states are situations where the game stops,

usually determined by some stopping condition.

▪ A play-off function that corresponds to each ending

states with a certain value. For example, in chess, each

ending state can only be a win, a loss (for White) or a

tie. Therefore, we can define the play-off function as

one that takes the value 1 at ending states that are

winning (for White), -1 at ending states that are losing

(for White), and 0 at ending states that are losing (for

White). In some other games, such as a scoring game,

the pay-off function takes an integer value in the

interval [-k, k] where k is some positive integer.

So, the problem of White is to find a sequence of moves

alternating with Black's moves producing strategy from

starting state to ending state which White wins.

2.1 Search Tree

To facilitate the study of move selection strategies, we

represent the above state space in the form of a game tree.

The game tree diagram is constructed as follows. The root of

the tree diagram corresponds to the starting state. We call a

node corresponding to the state at which White (Black)

decides its option for movement White node (Black node).

If one node is White (Black) corresponding to a state u, the

nodes following include all nodes representing a state v,

where v obtained from u when White

(Black) has performed a valid movement. Therefore, on the

same tree level, all nodes are White (Black), the leaves

correspond to the ending states.

Consider the game Dodgem (created by Colin Vout). There

are two White chess pieces and two Black chess pieces

initially placed on a 3*3 board (Fig 1). Black could move to

the blank box either on the right, above or below. White

could move a blank box either on the left, on the right, or

above. Black when it is on the right, most column could

move out of the board, White when it is on the top row

could move out of the board who either can move out of the

board first, or push the opponent cannot move will win.

Whoever takes his two pieces off the board first wins, or

creates a situation where the opponent can't move will also

win.

Fig 1: Game Doegem

In the situation Black goes first, the game tree shown in Fig

2.

When Black moves first, each branch of the tree diagram

represents a selection of Black chess pieces to expand state

space of the game.

Fig 2: Search tree

2.2 Searching on the Game Tree

Chess is a process in which Black and White decide

alternatively and one of the valid moves. On the game tree,

that process creates a path from the root to the leaves.

Suppose at some point, the path has led to the node u. If u is

a White (Black) node, White (Black) needs to have decision

to move to one of the Black (White) node v that is a sub-

node of u. At the Black (White) note v that White (Black)

has just selected, Black (White) needs to move to one of the

White (Black) nodes w which is a sub-node of v. The above

process will stop when reaching a node which is the leaf of

the tree diagram.

3. Minimax Strategy

In the situation White needs to find a move at u node. The

optimal move for White is the one that gradually reaches the

sub-node of v which is the best node (for White) among the

sub-nodes of u. We assume that, in opponent turn moving

from v, Black also choose the best move. Thus, to choose

the optimal move for White at node u, we need to determine

the values of the nodes of the game tree diagram with root u.

The value of the leaf nodes (corresponding to the ending

states) is the value of the play-off function. The larger the

value of the node, the better for White and vice versa. To

determine the value of the nodes of the game tree with root

u, we move from the lowest level to the root u. Assuming

that v is the inner node of the tree and its sub-nodes have

been determined and if v is a White node, its value is

determined to be the largest in the values of the sub-nodes.

If v is a Black node, its value is the smallest in the values of

the sub-nodes.

The Fig 3 shows the root a is the White node. The value of

the nodes is the number next to each node. Node i is White,

so its value is max (3,-2) = 3, node d is Black, so its value is

min(2, 3, 4) = 2.

Fig 3: Assigning values of game tree definitions

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

465

Assinng the values to the nodes is done by the recurrent

functions MaxVal and MinVal. The MaxVal function

determines the value for the White nodes, the MinVal

function determines the value for the Black nodes.

function MaxVal(u){

if u is the ending node then

MaxVal(u) f(u)

else MaxVal(u) ← max{MinVal(v) | v is

a sub-node of u;

return ...;

}

//-----------------------------------

function MinVal(u){

if u is the ending node then

MinVal(u) f(u)

else MinVal(u) ← min{MaxVal(v) | v is

a sub-node of u;

return ...;

}

In the above recurrent functions, f(u) is the value of the

play-off function at the ending node u. The following

procedure shows a move selection for White at node u. In

Minimax(u,v), v is the variable storing the state that White

has chosen the movement from u.

function Minimax(u, v){

val ← -∞;

for each w is a sub-node of u

if val <= MinVal(w){

val ← MinVal(w);

v ← w};

return ...;

}

The move selection step above is called the Minimax

strategy because White has already selected a move that

leads to a sub-node whose value is the max in the values of

the sub-nodes, and Black responds with a move to a node

whose value is the min in the values of sub-nodes.

Minimax algorithm is a depth search algorithm, in this

situation, we have installed Minimax algorithm by recurrent

functions. Readers, please write a non-recurrent procedure

to implements this algorithm.

Theoretically, the Minimax strategy allows us to find the

optimal move for White. However, it is not practical, we do

not have enough time to calculate the optimal moves due to

the Minimax algorithm requires us to consider all the nodes

of the game tree. In good games, the game tree is extremely

large. For example, for chess, taking into account only a

depth of 40, the game tree already has about 10120 nodes. If

the tree has height m, and at each node is b move, then the

time complexity of Minimax algorithm is O (bm).

In order to quickly find a good (non-optimal) move instead

of using the play-off function and consider all the

possibilities leading to the ending states, we use the

evaluation function and only consider a part of the game

tree.

3.1 Evaluation Function

The eval evaluation function corresponds to each u state of

the game with a numerical value eval(u), which is an

estimate of the "advantage" of u state. The more

advantageous the u state is for White, the larger the positive

number of the eval(u) is; The more advantageous u state is

for Black, the smaller the negative of the eval(u) is; eval(u)

≈ 0 is a disadvantageous state for everyone.

The quality of the chess program depends a lot on the

evaluation function. If the evaluation function gives us an

incorrect estimate of the states, it can guide us to a good

state, however, actually we are at a disadvantage. Designing

a good evaluation function is a difficult task, requiring us to

consider many factors: the remaining chess pieces of the two

sides, the arrangement of those chess pieces, etc. There is a

contradiction between the accuracy of the evaluation

function and its computational time in this situation. The

exact evaluation function requires a lot of computational

time, and the players are limited by the time when they

make a move.

The following simple evaluation function for chess is

proposed: Each type of chess piece is assigned a numerical

value that corresponds to its "strength". For instant, each

White (Black) pawn is given 1 (-1), a White (Black) bishop

or knight is given 3 (-3), a White (Black) castle is given 5 (-

5) and a White (Black) queen is given 9 (-9). Taking the

sum of the values of all the pieces in a state, we get the

value of that state. Such an evaluation function is called a

weighted linear function because it can be expressed as:

 (1)

In which, wi is the value of each type of piece, and Si is the

number of pieces of that type. In this assessment, we did not

think to the arrangement of the pieces and the relationships

between them.

Now a way of evaluating states in the Dodgem game is

proposed. Each White (or Black) piece in a position on the

chessboard is given a corresponding value, as shown in Fig

4.

Fig 4: Evaluation of the position of the pieces in the game Dodgem

In addition, if White directly blocks Black piece, it gains 40

points, if it is an indirect obstruction, it gains 30 points (See

Fig 5). Similarly, if Black directly blocks White, it gains -40

points, if it is an indirect obstruction, it gains -30 points.

Fig 5: Evaluation of the correlation between White and Black

pieces in the game Dodgem

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

466

Applying the above rules, we can calculate the value of the

state on the left of Fig 6 is 75, the value of the state on the

right of the figure is -5.

Fig 6: Evaluation of the correlation between White and Black

pieces in the game Dodgem

In the above assessment, we have considered the position of

the pieces and the relationship between the pieces.

In order to limit the search space in a simple way is to

determine the movement for White at u, we only consider

the game tree at root u to some height h. Applying the

Minimax procedure to the game tree at root u, the height h

and using the value of the evaluation function for the leaves

of that tree, we will find a advantageous move for White at

u.

3.2 Alpha-Beta Cut Method

Although we limit the search space to the game tree at root u

with height h, the number of nodes of this game tree is also

very large with h ≥ 3 in the Minimax searching strategy, a

way that help to find a beneficial move for White at state u.

For example, in chess, the average of branch factor in the

game tree is about 35, required time to make a move is 150

seconds when your program on a conventional computer can

only consider nodes in the depth of 3 or 4. A chess player at

the medium level can precalculate 5, 6 moves or more, and

thus your program will meet the need of the beginner level.

When evaluating node u to depth h, a Minimax algorithm

requires us to evaluate all nodes of the tree at root u to depth

h. However, we can reduce the number of notes that need to

be evaluated without affecting the evaluation of node u. The

alpha-beta cut method allows us to remove branches that are

not necessary for the evaluation of node u.

The ideal of alpha-beta cut method is as follows: Remember

that the Minimax searching strategy is a depth searching

strategy. We can assumes that in the search process we go

down node White a, and node a has a brother v has been

evaluated. And we also assumes that father of node a is b

and b has a brother u already evaluated, and father of b is c

(Fig 7). And we have the min value of node c (White node)

is the value of u, the max value of node b (Black node) is the

value of v. Therefore, if eval(u) > eval(v), we do not need to

move down to evaluate node a without affecting node c. In

other words, we can cut off the subtree at root a. We have

the similar argument for the case that a is a Black node, in

this case if eval(u) < eval(v) we can also cut the subtree at

root a.

Fig 7: Cut off the subtree at root a, if eval(u)>eval(v)

In order to install the alpha-beta cut method, for nodes lying

on the path from the root to the current node, we use the

parameter α to record the maximum value of the evaluated

sub-nodes of a White node, and the parameter β records the

minimum value of the evaluated sub-nodes of a Black node.

The values of α and β will be updated during the searching

process. α and β are used as local variables in the functions

MaxVal(u, α, β) (function to determine the value of the node

Black u) and Minval(u, α, β) (the function to determine the

value of the node Black u).

function MaxVal(u, α, β){

if u is the leaf of the limitted

tree or u is the ending node

MaxVal ← eval(u)

else for each node v is a sub-node

of u

{α ← max[α, MinVal(v, α, β)];

// Cutting out the subtrees from the

remaining node v

if α ≥ β exit};

MaxVal ← α;

}

//----------------------------------

function MinVal(u, α, β){

if u is the leaf of the limitted

tree or u is the ending node

 MinVal ← eval(u);

else for each node v is a sub-node

of u

{β ← min[β, MaxVal(v, α, β)];

// Cutting out the subtrees from the

remaining node v

if α ≥ β exit};

MinVal ← β;

}

The algorithm searching for the move of White uses the

alpha-beta cut method, installed by the procedure

Alpha_beta(u,v), where v is the parameter recording the

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

467

node that White needs to reach from u.

procedure Alpha_beta(u,v){

α ← -∞;

β ← ∞;

for each node, w is a sub-node of u

if α ≤ MinVal(w, α, β)

{α ← MinVal(w, α, β); v w;}

}

The game tree at root u (White node) limitted by height h =

3, as denoted in Fig 8. The number next to the leaves is the

value of the evaluation function. Applying the Minimax

strategy and the cut method, we determine the best move for

White at u, which leads to the node v with the value 10.

Next to each node, we also give the value of the parameter

pair (α, β). When calling the MaxVal and MinVal functions

to determine the value of that node. The removed branches

are shown in Fig 8.

Fig 8: Determination of node values using Alpha – Beta cut

method

4. Conclusion

In this paper, the authors have introduced the algorithm for

solutions in fighting game with a search space represented

by a search tree. The game used to illustrate the algorithm is

the Doegem game. In order to reduce the search space, make

the representation easier and speed up searching for

solution, the Alpha - Beta cut method has been proposed.

From illustrative examples with specific values, the

effectiveness of the method mentioned is clearly

demonstrated. Basing on this result, we are going to install

specifically an application to make the test more thoroughly.

5. Acknowledgment

This paper was implemented by authors who are the

lecturers of Thai Nguyen University of Technology

(TNUT). Thank TNUT for your help and support to

complete this study.

6. References

1. Charniak E. Introduction to artificial intelligence,

Pearson Education India, 1985.

2. Nilsson NJ, Nilsson NJ. Artificial intelligence: A new

synthesis, Morgan Kaufmann, 1998.

3. Bratko I. Prolog programming for artificial intelligence,

Pearson education, 2001.

4. Korb KB, Nicholson AE. Bayesian artificial intelligence,

CRC press, 2010.

5. Mitchell RS, Michalski JG, Carbonell TM. An artificial

intelligence approach, Springer, Berlin, 2013.

6. Genesereth MR, Nilsson NJ. Logical foundations of

artificial intelligence, Morgan Kaufmann, 2012.

7. Nilsson NJ. Principles of artificial intelligence, Morgan

Kaufmann, 2014.

8. Russell S, Norvig P. Artificial intelligence: A modern

approach, 2nd Edition, Prentice-Hall, 2003.

9. Ginsberg M, Morgan Kaufman, Essentials of artificial

intelligence, 1993.

10. Ginsberg M. Essentials of artificial intelligence, Newnes,

2012.

11. Ahlquist JB, Novak J. Game Artificial Intelligence,

Thomson, 2008.

12. Barr A, Feigenbaum EA. (Eds.). The handbook of

artificial intelligence. Butterworth-Heinemann. 2014; 2.

13. Wolfgang Ertel, Introduction to Artificial Intelligence

(Second Edition), Translated by Nathanael Black with

illustrations by Florian Mast, Springer International

Publishing AG, 2017.

http://www.multiresearchjournal.com/

