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Abstract 

In this Paper, we introduce Algorithms searching for 

solutions in fighting games, a common layer of problems in 

the field of Artificial Intelligence (AI). There are many 

types of fighting games. The complexity of algorithms in 

terms of memorial space and computational time is often 

very large. Each particular game has its own rules of 

movements, starting states and ending states. In order to 

describe this problem, 5 components including starting state, 

intermediate state, ending state, transition, and search tree 

are used. Finding a new move advantageously is a search 

tree basing on the evaluating function. From the general 

algorithm, in order to reduce the complexity, the paper also 

introduces the α-β cut method. According to this method, 

some branches in the search tree can be ignored. When 

applying the limited search depth level and the α-β cut 

method, the algorithm produces a faster searching result and 

allows the player to have multiple choices about the 

difficulty level of the games. 
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1. Introduction 

Artificial intelligence or artificial intelligence (AI) is an intelligence programmed by humans with the goal of enabling 

computers to automate intelligent behaviors like humans [1, 2]. The difference between artificial intelligence and logical 

programming in programming languages is the application of machine learning systems simulating human intelligence in 

processes that humans do better than computers [3]. 

Artificial intelligence has been known as a keyword of the 4th industrial revolution. The world is entering a new era with rapid 

development of thanks to AI. AI is the realization of human abilities such as seeing, hearing, decision-making, movement and 

learning entered into computers. In other words, AI is a combination of algorithms, big data, and computing power. These are 

the three main components that allow us to build the complete artificial intelligence [4-6]. 

Artificial intelligence has become a bridge for many fields from digital, physical to biotechnology. Devices and machines 

using AI can be present everywhere in life [7-10]. Amazon, for example, distributes billions of products using advanced 

automation technology, machine learning and robotics, maximizing efficiency, minimizing human resources [12, 13]. 

In the core of this paper, the algorithm searching for the solution in the game with 2 opponents (such as chess, Chinese chess, 

checkers, etc.) is proposed [11]. The first player is called White, his opponent is called Black. The aim of the algorithm is to 

search for White to get the best benefit for itself and pass the difficulty to the Black (the algorithm is set up on the side of 

White). The algorithm will stop when neither White win the game or Black cannot move to the next step. 

 

2. Search Space 

We will consider two-player games with the following characteristics. Two players take turns making moves that follow 

certain rules, the rules are the same for both players. Typically, in chess, two players can apply the rules of pawn, castle, to 

make a move. Rule of white pawn, white castle, etc. as well as the rule of Black pawn, Black castle, etc. Another feature is that 

both players are fully informed about the situation in the game (unlike in card games, the player cannot know what cards the 

other players have left). The chess problem can be thought of as a problem of finding a move, where at each turn, the player 

must choose amongst many possible options (obeys the rule), the best option which could lead him to win in the player’s turn 

of games. However, the search problem here will be complicated because of opponents, the player does not know the 

movements of his opponent in the next steps. We will state more precisely this search problem in the following: 

▪ The chess problem can be considered as the search problem in a state space. Each state is a situation (the arrangement of 

the chess pieces of the two sides on the chessboard). 

▪ The starting state is the arrangement of the chess pieces of the two sides at the beginning of the game. 

▪ Operators are valid moves. 
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▪ Ending states are situations where the game stops, 

usually determined by some stopping condition. 

▪ A play-off function that corresponds to each ending 

states with a certain value. For example, in chess, each 

ending state can only be a win, a loss (for White) or a 

tie. Therefore, we can define the play-off function as 

one that takes the value 1 at ending states that are 

winning (for White), -1 at ending states that are losing 

(for White), and 0 at ending states that are losing (for 

White). In some other games, such as a scoring game, 

the pay-off function takes an integer value in the 

interval [-k, k] where k is some positive integer. 

So, the problem of White is to find a sequence of moves 

alternating with Black's moves producing strategy from 

starting state to ending state which White wins. 

 

2.1 Search Tree 

To facilitate the study of move selection strategies, we 

represent the above state space in the form of a game tree. 

The game tree diagram is constructed as follows. The root of 

the tree diagram corresponds to the starting state. We call a 

node corresponding to the state at which White (Black) 

decides its option for movement White node (Black node). 

If one node is White (Black) corresponding to a state u, the 

nodes following include all nodes representing a state v, 

where v obtained from u when White  

(Black) has performed a valid movement. Therefore, on the 

same tree level, all nodes are White (Black), the leaves 

correspond to the ending states. 

Consider the game Dodgem (created by Colin Vout). There 

are two White chess pieces and two Black chess pieces 

initially placed on a 3*3 board (Fig 1). Black could move to 

the blank box either on the right, above or below. White 

could move a blank box either on the left, on the right, or 

above. Black when it is on the right, most column could 

move out of the board, White when it is on the top row 

could move out of the board who either can move out of the 

board first, or push the opponent cannot move will win. 

Whoever takes his two pieces off the board first wins, or 

creates a situation where the opponent can't move will also 

win. 

 

 
 

Fig 1: Game Doegem 
 

In the situation Black goes first, the game tree shown in Fig 

2. 

When Black moves first, each branch of the tree diagram 

represents a selection of Black chess pieces to expand state 

space of the game. 

 
 

Fig 2: Search tree 

 

2.2 Searching on the Game Tree 

Chess is a process in which Black and White decide 

alternatively and one of the valid moves. On the game tree, 

that process creates a path from the root to the leaves. 

Suppose at some point, the path has led to the node u. If u is 

a White (Black) node, White (Black) needs to have decision 

to move to one of the Black (White) node v that is a sub-

node of u. At the Black (White) note v that White (Black) 

has just selected, Black (White) needs to move to one of the 

White (Black) nodes w which is a sub-node of v. The above 

process will stop when reaching a node which is the leaf of 

the tree diagram.  
 

3. Minimax Strategy 

In the situation White needs to find a move at u node. The 

optimal move for White is the one that gradually reaches the 

sub-node of v which is the best node (for White) among the 

sub-nodes of u. We assume that, in opponent turn moving 

from v, Black also choose the best move. Thus, to choose 

the optimal move for White at node u, we need to determine 

the values of the nodes of the game tree diagram with root u. 

The value of the leaf nodes (corresponding to the ending 

states) is the value of the play-off function. The larger the 

value of the node, the better for White and vice versa. To 

determine the value of the nodes of the game tree with root 

u, we move from the lowest level to the root u. Assuming 

that v is the inner node of the tree and its sub-nodes have 

been determined and if v is a White node, its value is 

determined to be the largest in the values of the sub-nodes. 

If v is a Black node, its value is the smallest in the values of 

the sub-nodes. 

The Fig 3 shows the root a is the White node. The value of 

the nodes is the number next to each node. Node i is White, 

so its value is max (3,-2) = 3, node d is Black, so its value is 

min(2, 3, 4) = 2.  
 

 
 

Fig 3: Assigning values of game tree definitions 
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Assinng the values to the nodes is done by the recurrent 

functions MaxVal and MinVal. The MaxVal function 

determines the value for the White nodes, the MinVal 

function determines the value for the Black nodes. 

 
function MaxVal(u){ 

if u is the ending node then 

MaxVal(u) f(u) 

else MaxVal(u) ← max{MinVal(v) | v is 

a sub-node of u; 

return ...; 

} 

//-----------------------------------

----------------- 

function MinVal(u){ 

if u is the ending node then 

MinVal(u) f(u) 

else MinVal(u) ← min{MaxVal(v) | v is 

a sub-node of u; 

return ...; 

} 

 

In the above recurrent functions, f(u) is the value of the 

play-off function at the ending node u. The following 

procedure shows a move selection for White at node u. In 

Minimax(u,v), v is the variable storing the state that White 

has chosen the movement from u. 

 
function Minimax(u, v){ 

val ← -∞; 

for each w is a sub-node of u 

if val <= MinVal(w){ 

val ← MinVal(w); 

v ← w}; 

return ...; 

} 

 

The move selection step above is called the Minimax 

strategy because White has already selected a move that 

leads to a sub-node whose value is the max in the values of 

the sub-nodes, and Black responds with a move to a node 

whose value is the min in the values of sub-nodes. 

Minimax algorithm is a depth search algorithm, in this 

situation, we have installed Minimax algorithm by recurrent 

functions. Readers, please write a non-recurrent procedure 

to implements this algorithm. 

Theoretically, the Minimax strategy allows us to find the 

optimal move for White. However, it is not practical, we do 

not have enough time to calculate the optimal moves due to 

the Minimax algorithm requires us to consider all the nodes 

of the game tree. In good games, the game tree is extremely 

large. For example, for chess, taking into account only a 

depth of 40, the game tree already has about 10120 nodes. If 

the tree has height m, and at each node is b move, then the 

time complexity of Minimax algorithm is O (bm). 

In order to quickly find a good (non-optimal) move instead 

of using the play-off function and consider all the 

possibilities leading to the ending states, we use the 

evaluation function and only consider a part of the game 

tree. 

 

3.1 Evaluation Function 

The eval evaluation function corresponds to each u state of 

the game with a numerical value eval(u), which is an 

estimate of the "advantage" of u state. The more 

advantageous the u state is for White, the larger the positive 

number of the eval(u) is; The more advantageous u state is 

for Black, the smaller the negative of the eval(u) is; eval(u) 

≈ 0 is a disadvantageous state for everyone. 

The quality of the chess program depends a lot on the 

evaluation function. If the evaluation function gives us an 

incorrect estimate of the states, it can guide us to a good 

state, however, actually we are at a disadvantage. Designing 

a good evaluation function is a difficult task, requiring us to 

consider many factors: the remaining chess pieces of the two 

sides, the arrangement of those chess pieces, etc. There is a 

contradiction between the accuracy of the evaluation 

function and its computational time in this situation. The 

exact evaluation function requires a lot of computational 

time, and the players are limited by the time when they 

make a move. 

The following simple evaluation function for chess is 

proposed: Each type of chess piece is assigned a numerical 

value that corresponds to its "strength". For instant, each 

White (Black) pawn is given 1 (-1), a White (Black) bishop 

or knight is given 3 (-3), a White (Black) castle is given 5 (-

5) and a White (Black) queen is given 9 (-9). Taking the 

sum of the values of all the pieces in a state, we get the 

value of that state. Such an evaluation function is called a 

weighted linear function because it can be expressed as: 

 

  (1) 

 

In which, wi is the value of each type of piece, and Si is the 

number of pieces of that type. In this assessment, we did not 

think to the arrangement of the pieces and the relationships 

between them. 

Now a way of evaluating states in the Dodgem game is 

proposed. Each White (or Black) piece in a position on the 

chessboard is given a corresponding value, as shown in Fig 

4. 

 

 
 

Fig 4: Evaluation of the position of the pieces in the game Dodgem 
 

In addition, if White directly blocks Black piece, it gains 40 

points, if it is an indirect obstruction, it gains 30 points (See 

Fig 5). Similarly, if Black directly blocks White, it gains -40 

points, if it is an indirect obstruction, it gains -30 points. 

 

 
 

Fig 5: Evaluation of the correlation between White and Black 

pieces in the game Dodgem 
 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies    www.multiresearchjournal.com 

466 

Applying the above rules, we can calculate the value of the 

state on the left of Fig 6 is 75, the value of the state on the 

right of the figure is -5. 

 

 
 

Fig 6: Evaluation of the correlation between White and Black 

pieces in the game Dodgem 
 

In the above assessment, we have considered the position of 

the pieces and the relationship between the pieces. 

In order to limit the search space in a simple way is to 

determine the movement for White at u, we only consider 

the game tree at root u to some height h. Applying the 

Minimax procedure to the game tree at root u, the height h 

and using the value of the evaluation function for the leaves 

of that tree, we will find a advantageous move for White at 

u. 

 

3.2 Alpha-Beta Cut Method 

Although we limit the search space to the game tree at root u 

with height h, the number of nodes of this game tree is also 

very large with h ≥ 3 in the Minimax searching strategy, a 

way that help to find a beneficial move for White at state u. 

For example, in chess, the average of branch factor in the 

game tree is about 35, required time to make a move is 150 

seconds when your program on a conventional computer can 

only consider nodes in the depth of 3 or 4. A chess player at 

the medium level can precalculate 5, 6 moves or more, and 

thus your program will meet the need of the beginner level. 

When evaluating node u to depth h, a Minimax algorithm 

requires us to evaluate all nodes of the tree at root u to depth 

h. However, we can reduce the number of notes that need to 

be evaluated without affecting the evaluation of node u. The 

alpha-beta cut method allows us to remove branches that are 

not necessary for the evaluation of node u. 

The ideal of alpha-beta cut method is as follows: Remember 

that the Minimax searching strategy is a depth searching 

strategy. We can assumes that in the search process we go 

down node White a, and node a has a brother v has been 

evaluated. And we also assumes that father of node a is b 

and b has a brother u already evaluated, and father of b is c 

(Fig 7). And we have the min value of node c (White node) 

is the value of u, the max value of node b (Black node) is the 

value of v. Therefore, if eval(u) > eval(v), we do not need to 

move down to evaluate node a without affecting node c. In 

other words, we can cut off the subtree at root a. We have 

the similar argument for the case that a is a Black node, in 

this case if eval(u) < eval(v) we can also cut the subtree at 

root a. 

 

 
 

Fig 7: Cut off the subtree at root a, if eval(u)>eval(v) 
 

In order to install the alpha-beta cut method, for nodes lying 

on the path from the root to the current node, we use the 

parameter α to record the maximum value of the evaluated 

sub-nodes of a White node, and the parameter β records the 

minimum value of the evaluated sub-nodes of a Black node. 

The values of α and β will be updated during the searching 

process. α and β are used as local variables in the functions 

MaxVal(u, α, β) (function to determine the value of the node 

Black u) and Minval(u, α, β) (the function to determine the 

value of the node Black u). 

 
function MaxVal(u, α, β){ 

if u is the leaf of the limitted 

tree or u is the ending node 

MaxVal ← eval(u) 

else for each node v is a sub-node 

of u 

{α ← max[α, MinVal(v, α, β)]; 

// Cutting out the subtrees from the 

remaining node v 

if α ≥ β exit}; 

MaxVal ← α; 

} 

//----------------------------------

------------------ 

function MinVal(u, α, β){ 

if u is the leaf of the limitted 

tree or u is the ending node  

 MinVal ← eval(u); 

else for each node v is a sub-node 

of u 

{β ← min[β, MaxVal(v, α, β)]; 

// Cutting out the subtrees from the 

remaining node v 

if α ≥ β exit}; 

MinVal ← β; 

} 

 

The algorithm searching for the move of White uses the 

alpha-beta cut method, installed by the procedure 

Alpha_beta(u,v), where v is the parameter recording the 
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node that White needs to reach from u. 

 
procedure Alpha_beta(u,v){ 

α ← -∞; 

β ← ∞; 

for each node, w is a sub-node of u 

if α ≤ MinVal(w, α, β) 

{α ← MinVal(w, α, β); v w;} 

} 

The game tree at root u (White node) limitted by height h = 

3, as denoted in Fig 8. The number next to the leaves is the 

value of the evaluation function. Applying the Minimax 

strategy and the cut method, we determine the best move for 

White at u, which leads to the node v with the value 10. 

Next to each node, we also give the value of the parameter 

pair (α, β). When calling the MaxVal and MinVal functions 

to determine the value of that node. The removed branches 

are shown in Fig 8.  

 

 
 

Fig 8: Determination of node values using Alpha – Beta cut 

method 
 

4. Conclusion 

In this paper, the authors have introduced the algorithm for 

solutions in fighting game with a search space represented 

by a search tree. The game used to illustrate the algorithm is 

the Doegem game. In order to reduce the search space, make 

the representation easier and speed up searching for 

solution, the Alpha - Beta cut method has been proposed. 

From illustrative examples with specific values, the 

effectiveness of the method mentioned is clearly 

demonstrated. Basing on this result, we are going to install 

specifically an application to make the test more thoroughly. 
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