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Abstract 

Scientific and reliable battery management systems (BMS) 

are the key to the safe and efficient application of lithium-

ion battery energy storage systems. The traditional BMS has 

problems such as low computing resources and weak data 

processing ability, which makes the application of 

intelligent control algorithms and high simulation models 

limited. The digital twin (DT) technology characterized by 

the integration of information and physics has brought new 

opportunities for the development of BMSs. The creation of 

an intelligent BMS is accomplished through the creation of a 

DT that corresponds to the physical entities of the battery, 

virtual and real interactive feedback mechanisms, and data 

fusion. Systematically introduce the technical system and 

functions of the DT, including the data assurance layer, the 

modeling and calculation layer, the functional application 

layer, and the human-machine interaction layer. The key 

technologies, such as model modeling, data fusion, and 

mechanism model fusion, in the construction of battery DTs 

are analyzed. On this basis, the design framework of a 

lithium-ion BMS based on DT is clarified, with the goal of 

providing guidance and a reference for research into 

building an intelligent management system. 
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1. Introduction 

Under the background of “carbon peak, carbon neutral” green energy, energy storage systems have become a key link in 

building a new type of power system with new energy as the main body. The energy storage technologies can be divided into 

electrochemical energy storage, mechanical energy storage, and electromagnetic energy storage. Compared with other energy 

storage methods, electrochemical energy storage has the advantages of fast response, high conversion efficiency, a short 

construction period, and so on, making its application scale continue to expand [1]. Lithium-ion batteries have become the main 

technical route for electrochemical energy storage with the advantages of high energy density, long service life, and no 

memory effect [2]. Scientific and effective management of lithium-ion batteries is the premise for ensuring the safe and efficient 

use of the battery energy storage system and is also an important link to achieving low carbon. Because the traditional 

embedded lithium-ion battery management system has limited data processing capacity and computing resources and the 

complex management strategy and algorithm model cannot run on the BMS, it is still challenging to carry out scientific and 

effective management, operation, and maintenance of lithium batteries. 

The DT technology, characterized by the integration of information and physics, has attracted the attention of academic and 

industrial circles at home and abroad [3]. On the DT platform, the virtual model corresponding to the physical entity can be 

established, and the data such as the characteristics and performance of the physical entity can be described through the virtual 

model. The virtual model can also be used to predict the future development trend of the physical entity  [4], allowing for status 

monitoring, health diagnosis, future prediction, and performance optimization of the physical entity. 

NASA created the twin of the spacecraft in the Apollo program in 1969  [5]. The earth twin was placed to simulate and reflect 

the spacecraft's on-orbit working state in space, as well as the prediction and resolution of emergencies. With the continuous 
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development of modeling and simulation technology, the 

concept of DT was proposed by Professor Michael Grieves 

of the University of Michigan [6] in his product life cycle 

course in 2003, and the main framework of DT was 

described in the white paper on DT. However, the concept 

of DT was not mature at that time and only pointed out the 

need to use virtual models to simulate physical entities and 

operate and test on virtual models. Professor Grieves then 

conducted additional research and exploration on this 

concept, naming it “DT”. In 2012, NASA proposed an 

example of the combination of future aircraft and DT 

technology, defining the DT model as a simulation process 

that fully utilizes data and integrates multi-physics, multi-

scale, and multi-probabilistic simulation [7]. As a result, the 

use of DT has become widespread, gradually infiltrating 

from the aircraft field to the industrial field, and the 

functions that can be realized are also moving towards the 

development trend that can predict the future of physical 

entities. In order to promote the digital revolution and 

accelerate the integration of the virtual world and the 

physical world [8], DT technology has been incorporated into 

the general direction of enterprise strategy by many 

technology companies. ANSYS, a giant simulation and 

modeling company, uses DT technology to model the whole 

life cycle of complex physical product objects and analyzes 

them in combination with simulation. Siemens applies its 

products and systems to the DT solution system based on 

the industrial internet platform; and Dassault has created a 

3D product experience platform through DT technology, 

through which users and managers can interact with 

products more intuitively. 

Wu et al. [9] applied DT technology to the condition 

monitoring of a power battery pack and introduced the data-

driven modeling method to further integrate DT and model 

data into a framework to create a complete DT. Merkle et al. 

[10] put the DT model in the cloud computing environment 

for operation and combined the twin model with the 

corresponding data generated by physical entities in the 

cloud computing environment, improving the computing 

capacity and data storage capacity of the battery system. He 

et al. [11] achieved rapid prediction of the life of lithium-ion 

batteries by establishing DT of lithium-ion batteries to 

generate battery aging tracks under different working 

conditions. 

At present, research on the application of DT technology in 

BMSs is still lacking. This paper systematically describes 

the various parts involved in the BMS based on DT, 

providing guidance and assistance for the research on 

building a lithium BMS based on DT. The content of this 

paper is arranged as follows: Section 2 introduces the four 

main levels of the DT technology system; Section 3 

introduces the modeling method of lithium-ion batteries; 

Section 4 describes the dual-driven method of data and 

model fusion of DT; In Section 5, a DT framework for 

lithium BMSs is proposed; Section 6 summarizes the full 

text. 

 

2. Digital twin technology 

The digital representation of physical entities is known as 

twinning [12]. The virtual process in DT is completely 

matched with the operation of a real-time physical process. 

During the whole life cycle of the physical entity, the 

corresponding virtual model will continuously update the 

same performance and state data as the physical entity. In 

order to build a complete DT system, it is necessary to 

integrate multiple platform-based frameworks into a closed 

loop of information interaction from the physical world to 

the digital space. A complete DT technology system 

includes the following four main layers [13]: data assurance 

layer, modeling and computing layer, functional application 

layer, and human-machine interaction layer. Each layer is an 

indispensable part of the DT system, which involves the 

utilization of the resources of the upper layer and provides 

the necessary conditions for the formation of the next layer. 

A complete DT technology system is shown in Fig 1. 

 

 
 

Fig 1: Schematic diagram of digital twin technology [14] 
 

The data assurance layer is used to realize the functions of 

collection, transmission, and storage of physical entity 

operation data. Data is the basis of the entire DT technology 

system [26]. All functions in the model and the interaction 

between virtual and real models will be performed around 

data. Before modeling, it is necessary to clean, normalize, 

and sort the collected relevant data for calibration and 

detection by the model. The operation data of the physical 

entity is collected by the high-performance sensor installed 

on the entity, and the corresponding data is transferred to the 

data management system for storage through the high-speed 

data transmission tool. 

The modeling and computing layer is the backbone of the 

DT technology system. Before modeling the virtual model, 

it is necessary to understand the working principle of the 

physical entity and the relevant internal reactions. By 

establishing a multi-physical, multi-scale, multi-

probabilistic simulation model, the virtual modeling of the 

physical entity is realized, the collected data is analyzed and 

calculated at multiple levels, the virtual model is iteratively 

optimized, and the fidelity of the virtual model is evaluated 

to judge whether the model is reliable. High-precision 

models can allow DT to operate and control physical entities 

from more perspectives in their applications. 

The functional application layer is oriented toward the 

design and maintenance management of the actual system, 

including the task risk assessment, the whole life cycle 

management of the system, the monitoring of the system 

production process, the intelligent decision-making of the 

system, and other functions to achieve all-round and multi-

angle management. In some complex situations, simulation 

operations can be performed through the functional 

application layer [15] to guarantee system maintenance and 

save human and material resources generated by system 

maintenance and operation. 
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The human-computer interaction layer provides users with a 

good operation platform to manage and use the DT system, 

including data visualization, optimization control, diagnosis, 

and prediction functions, which is convenient for users to 

operate the DT system [16]. Various information sensing, 

such as a multi-function 3D sensor, can be added to this 

layer to improve the user experience and allow users to 

understand the entire system more intuitively and deeply. 

The existence of a human-computer interaction layer makes 

the DT system more closely connected with users, and the 

ease of interaction with the system is an important indicator 

of the practicality of this layer. 

 

3. Lithium Battery Models  

3.1 Electrochemical mechanism model 

The electrochemical mechanism model of the battery is a 

model that describes the characteristics of the battery based 

on the electrochemical reaction mechanism inside the 

lithium-ion battery, and its parameters have clear physical 

significance. The positive and negative electrodes in the 

electrochemical mechanism model are composed of porous 

electrode structures, which are divided into homogeneous 

and heterogeneous models according to the size of the active 

particles. Because the calculation cost of the heterogeneous 

model is high and the optimization of the homogeneous 

model can obtain high-precision prediction results similar to 

the heterogeneous model [17], the homogeneous model is 

used in this paper for research. Newman et al. [18] simplified 

the electrochemical mechanism model of the battery to a 

pseudo-two-dimensional (P2D) model, as shown in Fig 2. 

The model includes six parts: a positive electrode, a positive 

current collector, a negative electrode, a negative current 

collector, electrolyte, and a separator, which can provide 

internal information about the battery reaction, such as 

lithium-ion concentration in the electrode and electrolyte. 

The P2D model has a high calculation accuracy when 

calculating the electrode state, but it involves a large number 

of partial differential equations and parameters, which 

makes it very time-consuming to directly use the P2D model 

for calculation and is difficult to directly apply in the 

embedded BMS [19]. Based on the homogeneous porous 

electrode theory and concentrated solution theory of the 

P2D model, researchers have simplified the P2D model. 

Romero-Becerril et al. [20], based on the SPM model, 

simplified the diffusion and concentration polarization 

effects in the electrolyte and further improved the 

calculation efficiency of the model. Goel et al. [21] reduced 

the P2D model to a 1D model by simplifying the control 

equation and testing the method's feasibility. 

 

 

 
 

Fig 2: P2D electrochemical model 
 

3.2 Thermal model 

The operating temperature of the battery is an important 

parameter that reflects the battery’s safe state. The accurate 

establishment of the battery thermal model plays an 

important role in battery management. The thermal model 

expression of a battery generally includes an energy balance 

equation, a heat generation equation, and a boundary 

condition equation [22]. At present, the commonly used 

thermal models of batteries include the concentrated 

parameter thermal model and the distributed parameter 

thermal model. Among them, the lumped parameter model 

regards the heat source of the entire lithium-ion battery as a 

uniform heating entity, and the heat production rate of each 

area in the battery is consistent. The change in battery 

temperature during the battery charging and discharging 

process is the result of electrochemical reactions, mixing 

effects, and joule heat reactions [23]. The thermal 

characteristics of the battery can be estimated by using the 

general energy balance equation describing the thermal 

characteristics of the battery. However, the lumped 

parameter model cannot describe the spatial distribution of 

the internal temperature of the battery. The distributed 

parameter thermal model takes into account the non-

uniformity of the spatial distribution of the internal 

temperature of the battery. Based on the study of the rate at 

which the battery produces heat, research on the local 
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current distribution heat generation and the finite element 

method is added to solve the fact that the battery's internal 

temperature is not spread out evenly in space [24]. 

 

3.3 Electrochemical-thermal coupling model 

Due to the complex reaction of the heat generation 

mechanism inside the battery, it is impossible to accurately 

simulate the battery based on a single thermal model, and 

the coupling of a thermal model with an electrochemical 

mechanism model has become a trend. The heat generation 

rate of the battery is calculated by the electrochemical model 

and mapped to the thermal model as the heat source, and 

then the internal temperature field of the battery is 

calculated by the thermal model. The relevant parameters in 

the electrochemical model are adjusted according to the 

temperature of the internal temperature field of the battery to 

realize the coupling between the electrochemical model and 

the thermal model. Mastali et al. [25] established the 

electrochemical-thermal coupling model of a large lithium-

ion battery to simulate the three-dimensional distribution of 

electrochemical and thermal variables in the battery and 

verified the accuracy of the model through experiments. 

Tang et al. [26] established an electrochemistry-thermal 

coupling model for battery discharge. After studying the 

distribution of cathodic reaction current density and the 

evolution of reaction current density with discharge time, it 

was found that the electrochemistry-thermal coupling model 

has higher accuracy than the single electrochemical model, 

especially at high discharge rates. Compared with other 

coupling models, the electrochemistry-thermal coupling 

model can simulate the working state of the battery from 

multiple perspectives, such as the heat generation of the 

chemical reaction inside the battery, laying the foundation 

for the research on the DT model of the lithium battery. 

 

4. Design of DT Model for lithium BMS 

The BMS plays an important role in ensuring the safety and 

efficiency of lithium-ion batteries. The application of DT 

technology in the lithium-ion BMS can improve the 

reliability of the system [27]. This technology transmits the 

collected real-time data to the cloud for calculation to update 

the status of the battery twinning model in real time. Users 

can view the operation status of the battery in real time 

through the visual interface [28]. The DT system can be used 

to simulate a battery that is not easy to operate or that is 

operated under extreme conditions, so as to obtain the 

corresponding results, and then predict, judge, or control the 

battery according to the results. 

The lithium-ion BMS framework based on DT technology 

includes four parts [29], including a virtual model, a physical 

entity, the DT cloud platform, and a BMS, as shown in Fig 

3. 

 

 
 

Fig 3: Shell of lithium-ion battery management system based on digital twin 
 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

1124 

In the process of establishing the system, the battery is first 

regarded as a physical entity, and the real-time operation 

data of the physical entity is collected through high-

performance sensors. The simulation modeling tool is used 

to establish a multi-dimensional, multi-scale, multi-physical 

field coupling virtual model corresponding to the physical 

entity according to the internal principles of the battery 

(electrochemical reaction principle, heat generation 

principle, etc.) and the physical field (electrochemical, 

thermal, mechanical, etc.). Then, deploy the virtual model to 

the DT cloud platform, use 3D rendering software to draw 

the 3D visualization model of the battery, and import the 

model into the 3D scene software (such as Unity3D) to 

establish the corresponding 3D visualization interface. 

Through data interaction between the Twin Cloud data 

system and 3D visualization interface, further intelligent 

management and optimization of models are carried out on 

the DT cloud platform. In this process, common modeling 

tools include COMSOL Multiphysics, MATLAB, and 

ANSYS Twin Builder. The twin cloud data system will pre-

process and store the data generated by the operation of 

physical entities and virtual models, update the status 

information of virtual models, integrate the status 

information of physical entities (physical element attribute 

data, real-time collected battery data, etc.) and virtual model 

status information (simulation data, virtual model parameter 

information), and then transmit them to the cloud computing 

system [30]. The cloud computing system calculates the 

received data to obtain the real-time model parameters, 

status information, etc., of the battery, and after optimizing 

the control strategy for the whole life cycle of the battery, it 

transmits the control strategy and parameter information to 

the BMS through the data transmission interface. After 

receiving the data, the BMS updates the status information 

and control strategy of the battery accordingly to realize the 

rolling optimization management of the whole life cycle of 

the battery. 

 

5. Conclusion 

Digital twin technology plays an important role in 

promoting intelligent manufacturing and digitalization. The 

introduction of DT technology into the field of battery 

energy storage provides new opportunities for the 

development of intelligent battery management system and 

battery energy storage system, especially promoting the 

development and application of intelligent control 

algorithms and high simulation models. This paper focuses 

on the application of DT technology in BMS, analyzes the 

DT technology system hierarchically, expounds the 

modeling method of battery electrochemical model and 

thermal model, introduces the method of data and model 

dual-driven, and further clarifies the technical framework 

design of BMS based on DT, and introduces the DT BMS 

into multiple modules, The corresponding design scheme is 

given. The DT technology plays an important role in battery 

management and other fields in the future, but it still faces 

many challenges: for example, there are many parameters to 

build a high simulation virtual model, and the accuracy of 

parameters needs to be improved; Utilize technologies such 

as high-performance computing and artificial intelligence to 

meet the needs of long-term large-scale data analysis; 

Advanced communication technology is used to reduce the 

transmission delay of data information and realize accurate 

real-time mapping of virtual and real systems. 

6. References  

1. Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming 

LIU, Min YAN, Shun TANG, et al. Patent analysis of 

fire-protection technology of lithium-ion energy storage 

system. Energy Storage Science and Technology. 2020; 

11(8):2664. 

2. Meng J, Luo G, Ricco M, Swierczynski M, Stroe DI, 

Teodorescu R. Overview of lithium-ion battery 

modeling methods for state-of-charge estimation in 

electrical vehicles. Applied sciences. 2018; 8(5):659. 

3. Tao F, Zhang H, Liu A, Nee AY. Digital twin in 

industry: State-of-the-art. IEEE Transactions on 

industrial informatics. 2018; 15(4):2405-2415. 

4. Shoukat MU, Yan L, Liu W, Hussain F, Nawaz SA, 

Niaz A. Digital Twin-Driven Virtual Control 

Technology of Home-Use Robot: Human-Cyber-

Physical System. In 2022 17th International Conference 

on Emerging Technologies (ICET) 2022, 240-246). 

IEEE. 

5. Rosen R, Von Wichert G, Lo G, Bettenhausen KD. 

About the importance of autonomy and digital twins for 

the future of manufacturing. Ifac-Papersonline, 2015; 

48(3):567-572. 

6. Grieves M. Digital twin: Manufacturing excellence 

through virtual factory replication. White paper. 2014; 

1:1-7. 

7. Glaessgen E, Stargel D. The digital twin paradigm for 

future NASA and US Air Force vehicles. In 53rd 

AIAA/ASME/ASCE/AHS/ASC structures, structural 

dynamics and materials conference 20th 

AIAA/ASME/AHS adaptive structures conference 14th 

AIAA, 2012, 1818. 

8. Batty M. Digital twins. Environment and Planning B: 

Urban Analytics and City Science. 2018; 45(5):817-

820. 

9. Wu B, Widanage WD, Yang S, Liu X. Battery digital 

twins: Perspectives on the fusion of models, data and 

artificial intelligence for smart battery management 

systems. Energy and AI, 2020; 1, 100016. 

10. Merkle L, Segura AS, Grummel JT, Lienkamp M. 

Architecture of a digital twin for enabling digital 

services for battery systems. In 2019 IEEE international 

conference on industrial cyber physical systems (ICPS), 

2019, May, 55-160). IEEE. 

11. He W, Mao J, Song K, Li Z, Su Y, Wang Y, et al. 

Structural performance prediction based on the digital 

twin model: A battery bracket example. Reliability 

Engineering & System Safety. 2023; 229:108874. 

12. Shoukat MU, Yu S, Shi S, Li Y, Yu J. Evaluate the 

connected autonomous vehicles infrastructure using 

digital twin model based on cyber-physical combination 

of intelligent network. In 2021 5th CAA International 

Conference on Vehicular Control and Intelligence 

(CVCI), 2021, October, 1-6. IEEE. 

13. Tuegel E. The airframe digital twin: some challenges to 

realization. In 53rd AIAA/ASME/ASCE/AHS/ASC 

structures, structural dynamics and materials conference 

20th AIAA/ASME/AHS adaptive structures conference 

14th AIAA, 2012, April, p1812. 

14. Shoukat MU, Yan L, Du C, Raza MUM, Adeel M, 

Khan T. Application of Digital Twin in Smart Battery 

Electric Vehicle: Industry 4.0. In 2022 International 

Conference on IT and Industrial Technologies (ICIT) 

2022, October, 1-7. IEEE. 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

1125 

15. Merkle L. Cloud-based battery digital twin middleware 

using model-based development. In Proceedings of the 

2019 3rd International Symposium on Computer 

Science and Intelligent Control, September 2019, 1-7. 

16. Weissig C, Schreer O, Eisert P, Kauff P. The ultimate 

immersive experience: Panoramic 3D video acquisition. 

In Advances in Multimedia Modeling: 18th 

International Conference, MMM 2012, Klagenfurt, 

Austria, January 4-6, 2012. Proceedings 18. Springer 

Berlin Heidelberg, 2012, 671-681. 

17. Ruqing FANG, Na ZHANG, Zhe LI. Comparison study 

of three porous electrode models for the forward design 

of lithium-ion batteries. Journal of Tsinghua University 

(Science and Technology). 2021; 61(10):1055-1065. 

18. Newman J, Thomas KE, Hafezi H, Wheeler DR. 

Modeling of lithium-ion batteries. Journal of power 

sources. 2003; 119:838-843. 

19. Li L, Ren Y, O'Regan K, Koleti UR, Kendrick E, 

Widanage WD, et al. Lithium-ion battery cathode and 

anode potential observer based on reduced-order 

electrochemical single particle model. Journal of 

Energy Storage. 2021; 44:103324. 

20. Romero-Becerril A, Alvarez-Icaza L. Comparison of 

discretization methods applied to the single-particle 

model of lithium-ion batteries. Journal of Power 

Sources. 2011; 196(23):10267-10279. 

21. Goel V, Chen KH, Dasgupta NP, Thornton K. 

Optimization of Laser-Patterned Electrode 

Architectures for Fast Charging of Li-ion Batteries 

Using Simulations Parameterized by Machine Learning. 

Energy Storage Materials, 2023. 

22. Melcher A, Ziebert C, Lei B, Zhao W, Luo J, Rohde M, 

et al. Modeling and simulation of the thermal runaway 

in cylindrical 18650 lithium-ion batteries. In The 

Proceedings of the 2016 COMSOL Conference, 

October 2016. 

23. Barcellona S, Piegari L. Lithium-ion battery models and 

parameter identification techniques. Energies. 2017; 

10(12):2007. 

24. Liu X, Zhang L, Yu H, Wang J, Li J, Yang K, et al. 

Bridging multiscale characterization technologies and 

digital modeling to evaluate lithium battery full 

lifecycle. Advanced Energy Materials. 2022; 12(33), 

2200889. 

25. Mastali M, Foreman E, Modjtahedi A, Samadani E, 

Amirfazli A, Farhad S, et al. Electrochemical-thermal 

modeling and experimental validation of commercial 

graphite/LiFePO4 pouch lithium-ion batteries. 

International Journal of Thermal Sciences. 2018; 

129:218-230. 

26. Tang Y, Jia M, Li J, Lai Y, Cheng Y, Liu Y. Numerical 

analysis of distribution and evolution of reaction current 

density in discharge process of lithium-ion power 

battery. Journal of the electrochemical society. 2014; 

161(8), E3021. 

27. Shoukat MU, Yan L, Zou B, Zhang J, Niaz A, Raza 

MU. Application of Digital Twin Technology in the 

Field of Autonomous Driving Test. In 2022 Third 

International Conference on Latest trends in Electrical 

Engineering and Computing Technologies 

(INTELLECT), 2022, November, 1-6. IEEE. 

28. Niaz A, Shoukat MU, Jia Y, Khan S, Niaz F, Raza MU. 

Autonomous driving test method based on digital twin: 

A survey. In 2021 International Conference on 

Computing, Electronic and Electrical Engineering (ICE 

Cube), 2021, October, 1-7. IEEE. 

29. Lizaso-Eguileta O, Martinez-Laserna E, Rivas M, 

Miguel E, Iraola U, Cantero I. Module-Level Modelling 

Approach for a Cloudbased Digital Twin Platform for 

Li-Ion Batteries. In 2021 IEEE Vehicle Power and 

Propulsion Conference (VPPC), 2021, October, 1-6. 

IEEE. 

30. Niaz A, Khan S, Niaz F, Shoukat MU, Niaz I, Yanbing 

J. Smart City IoT Application for Road Infrastructure 

Safety and Monitoring by Using Digital Twin. In 2022 

International Conference on IT and Industrial 

Technologies (ICIT), 2022, October, 1-6. IEEE. 

http://www.multiresearchjournal.com/

